MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibnd Structured version   Visualization version   Unicode version

Theorem pntibnd 24510
Description: Lemma for pnt 24531. Establish smallness of  R on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntibnd  |-  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )
Distinct variable groups:    x, z,
y    u, k, x, y, z    e, c, k, l, u, x, y, z, R    e, a,
k, u, x, y, z
Allowed substitution hint:    R( a)

Proof of Theorem pntibnd
Dummy variables  n  m  v  b  d 
f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . 3  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
21pntrmax 24481 . 2  |-  E. d  e.  RR+  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d
31pntpbnd 24505 . 2  |-  E. b  e.  RR+  A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)
4 reeanv 2944 . . 3  |-  ( E. d  e.  RR+  E. b  e.  RR+  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
) )  <->  ( E. d  e.  RR+  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  E. b  e.  RR+  A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
) ) )
5 2rp 11330 . . . . . . . . 9  |-  2  e.  RR+
6 rpmulcl 11347 . . . . . . . . 9  |-  ( ( 2  e.  RR+  /\  b  e.  RR+ )  ->  (
2  x.  b )  e.  RR+ )
75, 6mpan 684 . . . . . . . 8  |-  ( b  e.  RR+  ->  ( 2  x.  b )  e.  RR+ )
8 2re 10701 . . . . . . . . 9  |-  2  e.  RR
9 1lt2 10799 . . . . . . . . 9  |-  1  <  2
10 rplogcl 23632 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  1  <  2 )  -> 
( log `  2
)  e.  RR+ )
118, 9, 10mp2an 686 . . . . . . . 8  |-  ( log `  2 )  e.  RR+
12 rpaddcl 11346 . . . . . . . 8  |-  ( ( ( 2  x.  b
)  e.  RR+  /\  ( log `  2 )  e.  RR+ )  ->  ( ( 2  x.  b )  +  ( log `  2
) )  e.  RR+ )
137, 11, 12sylancl 675 . . . . . . 7  |-  ( b  e.  RR+  ->  ( ( 2  x.  b )  +  ( log `  2
) )  e.  RR+ )
1413ad2antlr 741 . . . . . 6  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
) ) )  -> 
( ( 2  x.  b )  +  ( log `  2 ) )  e.  RR+ )
15 id 22 . . . . . . . 8  |-  ( d  e.  RR+  ->  d  e.  RR+ )
16 eqid 2471 . . . . . . . 8  |-  ( ( 1  /  4 )  /  ( d  +  3 ) )  =  ( ( 1  / 
4 )  /  (
d  +  3 ) )
171, 15, 16pntibndlem1 24506 . . . . . . 7  |-  ( d  e.  RR+  ->  ( ( 1  /  4 )  /  ( d  +  3 ) )  e.  ( 0 (,) 1
) )
1817ad2antrr 740 . . . . . 6  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
) ) )  -> 
( ( 1  / 
4 )  /  (
d  +  3 ) )  e.  ( 0 (,) 1 ) )
19 elioore 11691 . . . . . . . . . . . . . . 15  |-  ( e  e.  ( 0 (,) 1 )  ->  e  e.  RR )
20 eliooord 11719 . . . . . . . . . . . . . . . 16  |-  ( e  e.  ( 0 (,) 1 )  ->  (
0  <  e  /\  e  <  1 ) )
2120simpld 466 . . . . . . . . . . . . . . 15  |-  ( e  e.  ( 0 (,) 1 )  ->  0  <  e )
2219, 21elrpd 11361 . . . . . . . . . . . . . 14  |-  ( e  e.  ( 0 (,) 1 )  ->  e  e.  RR+ )
2322rphalfcld 11376 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  e.  RR+ )
2423rpred 11364 . . . . . . . . . . . 12  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  e.  RR )
2523rpgt0d 11367 . . . . . . . . . . . 12  |-  ( e  e.  ( 0 (,) 1 )  ->  0  <  ( e  /  2
) )
26 1red 9676 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  1  e.  RR )
27 rphalflt 11352 . . . . . . . . . . . . . 14  |-  ( e  e.  RR+  ->  ( e  /  2 )  < 
e )
2822, 27syl 17 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  <  e )
2920simprd 470 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  e  <  1 )
3024, 19, 26, 28, 29lttrd 9813 . . . . . . . . . . . 12  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  <  1 )
31 0xr 9705 . . . . . . . . . . . . 13  |-  0  e.  RR*
32 1re 9660 . . . . . . . . . . . . . 14  |-  1  e.  RR
3332rexri 9711 . . . . . . . . . . . . 13  |-  1  e.  RR*
34 elioo2 11702 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR*  /\  1  e.  RR* )  ->  (
( e  /  2
)  e.  ( 0 (,) 1 )  <->  ( (
e  /  2 )  e.  RR  /\  0  <  ( e  /  2
)  /\  ( e  /  2 )  <  1 ) ) )
3531, 33, 34mp2an 686 . . . . . . . . . . . 12  |-  ( ( e  /  2 )  e.  ( 0 (,) 1 )  <->  ( (
e  /  2 )  e.  RR  /\  0  <  ( e  /  2
)  /\  ( e  /  2 )  <  1 ) )
3624, 25, 30, 35syl3anbrc 1214 . . . . . . . . . . 11  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  e.  ( 0 (,) 1 ) )
3736adantl 473 . . . . . . . . . 10  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( e  /  2 )  e.  ( 0 (,) 1
) )
38 oveq2 6316 . . . . . . . . . . . . . . 15  |-  ( f  =  ( e  / 
2 )  ->  (
b  /  f )  =  ( b  / 
( e  /  2
) ) )
3938fveq2d 5883 . . . . . . . . . . . . . 14  |-  ( f  =  ( e  / 
2 )  ->  ( exp `  ( b  / 
f ) )  =  ( exp `  (
b  /  ( e  /  2 ) ) ) )
4039oveq1d 6323 . . . . . . . . . . . . 13  |-  ( f  =  ( e  / 
2 )  ->  (
( exp `  (
b  /  f ) ) [,) +oo )  =  ( ( exp `  ( b  /  (
e  /  2 ) ) ) [,) +oo ) )
41 breq2 4399 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( e  / 
2 )  ->  (
( abs `  (
( R `  n
)  /  n ) )  <_  f  <->  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) )
4241anbi2d 718 . . . . . . . . . . . . . . 15  |-  ( f  =  ( e  / 
2 )  ->  (
( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  <->  ( ( v  <  n  /\  n  <_  ( m  x.  v
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
( e  /  2
) ) ) )
4342rexbidv 2892 . . . . . . . . . . . . . 14  |-  ( f  =  ( e  / 
2 )  ->  ( E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  <->  E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )
4443ralbidv 2829 . . . . . . . . . . . . 13  |-  ( f  =  ( e  / 
2 )  ->  ( A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  <->  A. v  e.  ( g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )
4540, 44raleqbidv 2987 . . . . . . . . . . . 12  |-  ( f  =  ( e  / 
2 )  ->  ( A. m  e.  (
( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  <->  A. m  e.  ( ( exp `  (
b  /  ( e  /  2 ) ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )
4645rexbidv 2892 . . . . . . . . . . 11  |-  ( f  =  ( e  / 
2 )  ->  ( E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  <->  E. g  e.  RR+  A. m  e.  ( ( exp `  ( b  /  ( e  / 
2 ) ) ) [,) +oo ) A. v  e.  ( g (,) +oo ) E. n  e.  NN  ( ( v  <  n  /\  n  <_  ( m  x.  v
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
( e  /  2
) ) ) )
4746rspcv 3132 . . . . . . . . . 10  |-  ( ( e  /  2 )  e.  ( 0 (,) 1 )  ->  ( A. f  e.  (
0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  ( b  /  f ) ) [,) +oo ) A. v  e.  ( g (,) +oo ) E. n  e.  NN  ( ( v  <  n  /\  n  <_  ( m  x.  v
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
f )  ->  E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  ( e  /  2 ) ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )
4837, 47syl 17 . . . . . . . . 9  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  ->  E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  ( e  /  2 ) ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )
49 simp-4l 784 . . . . . . . . . . 11  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) +oo ) A. v  e.  ( g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
d  e.  RR+ )
50 simpllr 777 . . . . . . . . . . 11  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) +oo ) A. v  e.  ( g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  ->  A. x  e.  RR+  ( abs `  ( ( R `
 x )  /  x ) )  <_ 
d )
51 simplr 770 . . . . . . . . . . . 12  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  d )  -> 
b  e.  RR+ )
5251ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) +oo ) A. v  e.  ( g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
b  e.  RR+ )
53 eqid 2471 . . . . . . . . . . 11  |-  ( exp `  ( b  /  (
e  /  2 ) ) )  =  ( exp `  ( b  /  ( e  / 
2 ) ) )
54 eqid 2471 . . . . . . . . . . 11  |-  ( ( 2  x.  b )  +  ( log `  2
) )  =  ( ( 2  x.  b
)  +  ( log `  2 ) )
55 simplr 770 . . . . . . . . . . 11  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) +oo ) A. v  e.  ( g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
e  e.  ( 0 (,) 1 ) )
56 simprl 772 . . . . . . . . . . 11  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) +oo ) A. v  e.  ( g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
g  e.  RR+ )
57 simprr 774 . . . . . . . . . . 11  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) +oo ) A. v  e.  ( g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  ->  A. m  e.  (
( exp `  (
b  /  ( e  /  2 ) ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) )
581, 49, 16, 50, 52, 53, 54, 55, 56, 57pntibndlem3 24509 . . . . . . . . . 10  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) +oo ) A. v  e.  ( g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
5958rexlimdvaa 2872 . . . . . . . . 9  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  ( e  /  2 ) ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
6048, 59syld 44 . . . . . . . 8  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
6160ralrimdva 2812 . . . . . . 7  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  d )  -> 
( A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  ->  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
6261impr 631 . . . . . 6  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
) ) )  ->  A. e  e.  (
0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( ( ( 1  / 
4 )  /  (
d  +  3 ) )  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
63 oveq1 6315 . . . . . . . . . . . 12  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  (
c  /  e )  =  ( ( ( 2  x.  b )  +  ( log `  2
) )  /  e
) )
6463fveq2d 5883 . . . . . . . . . . 11  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( exp `  ( c  / 
e ) )  =  ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) )
6564oveq1d 6323 . . . . . . . . . 10  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  (
( exp `  (
c  /  e ) ) [,) +oo )  =  ( ( exp `  ( ( ( 2  x.  b )  +  ( log `  2
) )  /  e
) ) [,) +oo ) )
6665raleqdv 2979 . . . . . . . . 9  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( A. k  e.  (
( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
6766rexbidv 2892 . . . . . . . 8  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
6867ralbidv 2829 . . . . . . 7  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( A. e  e.  (
0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( c  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( l  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
69 oveq1 6315 . . . . . . . . . . . . . . . 16  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
l  x.  e )  =  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )
7069oveq2d 6324 . . . . . . . . . . . . . . 15  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
1  +  ( l  x.  e ) )  =  ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) ) )
7170oveq1d 6323 . . . . . . . . . . . . . 14  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( 1  +  ( l  x.  e ) )  x.  z )  =  ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) )
7271breq1d 4405 . . . . . . . . . . . . 13  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y )  <->  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) ) )
7372anbi2d 718 . . . . . . . . . . . 12  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  <->  ( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) ) ) )
7471oveq2d 6324 . . . . . . . . . . . . 13  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) )  =  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) )
7574raleqdv 2979 . . . . . . . . . . . 12  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( A. u  e.  (
z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  e  <->  A. u  e.  ( z [,] (
( 1  +  ( ( ( 1  / 
4 )  /  (
d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  e )
)
7673, 75anbi12d 725 . . . . . . . . . . 11  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( ( y  < 
z  /\  ( (
1  +  ( l  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
)  <->  ( ( y  <  z  /\  (
( 1  +  ( ( ( 1  / 
4 )  /  (
d  +  3 ) )  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
7776rexbidv 2892 . . . . . . . . . 10  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( ( ( 1  / 
4 )  /  (
d  +  3 ) )  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
7877ralbidv 2829 . . . . . . . . 9  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  A. y  e.  ( x (,) +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
7978rexralbidv 2898 . . . . . . . 8  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
8079ralbidv 2829 . . . . . . 7  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( A. e  e.  (
0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( l  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
8168, 80rspc2ev 3149 . . . . . 6  |-  ( ( ( ( 2  x.  b )  +  ( log `  2 ) )  e.  RR+  /\  (
( 1  /  4
)  /  ( d  +  3 ) )  e.  ( 0 (,) 1 )  /\  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1 ) A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
8214, 18, 62, 81syl3anc 1292 . . . . 5  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
) ) )  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
8382ex 441 . . . 4  |-  ( ( d  e.  RR+  /\  b  e.  RR+ )  ->  (
( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
) )  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
8483rexlimivv 2876 . . 3  |-  ( E. d  e.  RR+  E. b  e.  RR+  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
) )  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
854, 84sylbir 218 . 2  |-  ( ( E. d  e.  RR+  A. x  e.  RR+  ( abs `  ( ( R `
 x )  /  x ) )  <_ 
d  /\  E. b  e.  RR+  A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,) +oo ) A. v  e.  (
g (,) +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
) )  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
862, 3, 85mp2an 686 1  |-  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
x (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757   class class class wbr 4395    |-> cmpt 4454   ` cfv 5589  (class class class)co 6308   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562   +oocpnf 9690   RR*cxr 9692    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   2c2 10681   3c3 10682   4c4 10683   RR+crp 11325   (,)cioo 11660   [,)cico 11662   [,]cicc 11663   abscabs 13374   expce 14191   logclog 23583  ψcchp 24098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-disj 4367  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-o1 13631  df-lo1 13632  df-sum 13830  df-ef 14198  df-e 14199  df-sin 14200  df-cos 14201  df-pi 14203  df-dvds 14383  df-gcd 14548  df-prm 14702  df-pc 14866  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-cmp 20479  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585  df-cxp 23586  df-em 23997  df-cht 24102  df-vma 24103  df-chp 24104  df-ppi 24105  df-mu 24106
This theorem is referenced by:  pnt3  24529
  Copyright terms: Public domain W3C validator