MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibnd Unicode version

Theorem pntibnd 21240
Description: Lemma for pnt 21261. Establish smallness of  R on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntibnd  |-  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )
Distinct variable groups:    x, z,
y    u, k, x, y, z    e, c, k, l, u, x, y, z, R    e, a,
k, u, x, y, z
Allowed substitution hint:    R( a)

Proof of Theorem pntibnd
Dummy variables  n  m  v  b  d 
f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . 3  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
21pntrmax 21211 . 2  |-  E. d  e.  RR+  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d
31pntpbnd 21235 . 2  |-  E. b  e.  RR+  A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
4 reeanv 2835 . . 3  |-  ( E. d  e.  RR+  E. b  e.  RR+  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
)  <->  ( E. d  e.  RR+  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  E. b  e.  RR+  A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )
5 2rp 10573 . . . . . . . . 9  |-  2  e.  RR+
6 rpmulcl 10589 . . . . . . . . 9  |-  ( ( 2  e.  RR+  /\  b  e.  RR+ )  ->  (
2  x.  b )  e.  RR+ )
75, 6mpan 652 . . . . . . . 8  |-  ( b  e.  RR+  ->  ( 2  x.  b )  e.  RR+ )
8 2re 10025 . . . . . . . . 9  |-  2  e.  RR
9 1lt2 10098 . . . . . . . . 9  |-  1  <  2
10 rplogcl 20452 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  1  <  2 )  -> 
( log `  2
)  e.  RR+ )
118, 9, 10mp2an 654 . . . . . . . 8  |-  ( log `  2 )  e.  RR+
12 rpaddcl 10588 . . . . . . . 8  |-  ( ( ( 2  x.  b
)  e.  RR+  /\  ( log `  2 )  e.  RR+ )  ->  ( ( 2  x.  b )  +  ( log `  2
) )  e.  RR+ )
137, 11, 12sylancl 644 . . . . . . 7  |-  ( b  e.  RR+  ->  ( ( 2  x.  b )  +  ( log `  2
) )  e.  RR+ )
1413ad2antlr 708 . . . . . 6  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )  ->  (
( 2  x.  b
)  +  ( log `  2 ) )  e.  RR+ )
15 id 20 . . . . . . . 8  |-  ( d  e.  RR+  ->  d  e.  RR+ )
16 eqid 2404 . . . . . . . 8  |-  ( ( 1  /  4 )  /  ( d  +  3 ) )  =  ( ( 1  / 
4 )  /  (
d  +  3 ) )
171, 15, 16pntibndlem1 21236 . . . . . . 7  |-  ( d  e.  RR+  ->  ( ( 1  /  4 )  /  ( d  +  3 ) )  e.  ( 0 (,) 1
) )
1817ad2antrr 707 . . . . . 6  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )  ->  (
( 1  /  4
)  /  ( d  +  3 ) )  e.  ( 0 (,) 1 ) )
19 elioore 10902 . . . . . . . . . . . . . . 15  |-  ( e  e.  ( 0 (,) 1 )  ->  e  e.  RR )
20 eliooord 10926 . . . . . . . . . . . . . . . 16  |-  ( e  e.  ( 0 (,) 1 )  ->  (
0  <  e  /\  e  <  1 ) )
2120simpld 446 . . . . . . . . . . . . . . 15  |-  ( e  e.  ( 0 (,) 1 )  ->  0  <  e )
2219, 21elrpd 10602 . . . . . . . . . . . . . 14  |-  ( e  e.  ( 0 (,) 1 )  ->  e  e.  RR+ )
2322rphalfcld 10616 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  e.  RR+ )
2423rpred 10604 . . . . . . . . . . . 12  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  e.  RR )
2523rpgt0d 10607 . . . . . . . . . . . 12  |-  ( e  e.  ( 0 (,) 1 )  ->  0  <  ( e  /  2
) )
26 1re 9046 . . . . . . . . . . . . . 14  |-  1  e.  RR
2726a1i 11 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  1  e.  RR )
28 rphalflt 10594 . . . . . . . . . . . . . 14  |-  ( e  e.  RR+  ->  ( e  /  2 )  < 
e )
2922, 28syl 16 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  <  e )
3020simprd 450 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  e  <  1 )
3124, 19, 27, 29, 30lttrd 9187 . . . . . . . . . . . 12  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  <  1 )
32 0xr 9087 . . . . . . . . . . . . 13  |-  0  e.  RR*
3326rexri 9093 . . . . . . . . . . . . 13  |-  1  e.  RR*
34 elioo2 10913 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR*  /\  1  e.  RR* )  ->  (
( e  /  2
)  e.  ( 0 (,) 1 )  <->  ( (
e  /  2 )  e.  RR  /\  0  <  ( e  /  2
)  /\  ( e  /  2 )  <  1 ) ) )
3532, 33, 34mp2an 654 . . . . . . . . . . . 12  |-  ( ( e  /  2 )  e.  ( 0 (,) 1 )  <->  ( (
e  /  2 )  e.  RR  /\  0  <  ( e  /  2
)  /\  ( e  /  2 )  <  1 ) )
3624, 25, 31, 35syl3anbrc 1138 . . . . . . . . . . 11  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  e.  ( 0 (,) 1 ) )
3736adantl 453 . . . . . . . . . 10  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( e  /  2 )  e.  ( 0 (,) 1
) )
38 oveq2 6048 . . . . . . . . . . . . . . 15  |-  ( f  =  ( e  / 
2 )  ->  (
b  /  f )  =  ( b  / 
( e  /  2
) ) )
3938fveq2d 5691 . . . . . . . . . . . . . 14  |-  ( f  =  ( e  / 
2 )  ->  ( exp `  ( b  / 
f ) )  =  ( exp `  (
b  /  ( e  /  2 ) ) ) )
4039oveq1d 6055 . . . . . . . . . . . . 13  |-  ( f  =  ( e  / 
2 )  ->  (
( exp `  (
b  /  f ) ) [,)  +oo )  =  ( ( exp `  ( b  /  (
e  /  2 ) ) ) [,)  +oo ) )
41 breq2 4176 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( e  / 
2 )  ->  (
( abs `  (
( R `  n
)  /  n ) )  <_  f  <->  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) )
4241anbi2d 685 . . . . . . . . . . . . . . 15  |-  ( f  =  ( e  / 
2 )  ->  (
( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  <->  ( ( v  <  n  /\  n  <_  ( m  x.  v
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
( e  /  2
) ) ) )
4342rexbidv 2687 . . . . . . . . . . . . . 14  |-  ( f  =  ( e  / 
2 )  ->  ( E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  <->  E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )
4443ralbidv 2686 . . . . . . . . . . . . 13  |-  ( f  =  ( e  / 
2 )  ->  ( A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  <->  A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  <  n  /\  n  <_  ( m  x.  v
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
( e  /  2
) ) ) )
4540, 44raleqbidv 2876 . . . . . . . . . . . 12  |-  ( f  =  ( e  / 
2 )  ->  ( A. m  e.  (
( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  <->  A. m  e.  ( ( exp `  ( b  /  ( e  / 
2 ) ) ) [,)  +oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )
4645rexbidv 2687 . . . . . . . . . . 11  |-  ( f  =  ( e  / 
2 )  ->  ( E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  <->  E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  ( e  /  2 ) ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  ( e  /  2 ) ) ) )
4746rspcv 3008 . . . . . . . . . 10  |-  ( ( e  /  2 )  e.  ( 0 (,) 1 )  ->  ( A. f  e.  (
0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  ( b  /  f ) ) [,)  +oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  ->  E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  ( e  /  2 ) ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  ( e  /  2 ) ) ) )
4837, 47syl 16 . . . . . . . . 9  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  ->  E. g  e.  RR+  A. m  e.  ( ( exp `  ( b  /  ( e  / 
2 ) ) ) [,)  +oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )
49 simp-4l 743 . . . . . . . . . . 11  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
d  e.  RR+ )
50 simpllr 736 . . . . . . . . . . 11  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  ->  A. x  e.  RR+  ( abs `  ( ( R `
 x )  /  x ) )  <_ 
d )
51 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  d )  -> 
b  e.  RR+ )
5251ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
b  e.  RR+ )
53 eqid 2404 . . . . . . . . . . 11  |-  ( exp `  ( b  /  (
e  /  2 ) ) )  =  ( exp `  ( b  /  ( e  / 
2 ) ) )
54 eqid 2404 . . . . . . . . . . 11  |-  ( ( 2  x.  b )  +  ( log `  2
) )  =  ( ( 2  x.  b
)  +  ( log `  2 ) )
55 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
e  e.  ( 0 (,) 1 ) )
56 simprl 733 . . . . . . . . . . 11  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
g  e.  RR+ )
57 simprr 734 . . . . . . . . . . 11  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  ->  A. m  e.  (
( exp `  (
b  /  ( e  /  2 ) ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  ( e  /  2 ) ) )
581, 49, 16, 50, 52, 53, 54, 55, 56, 57pntibndlem3 21239 . . . . . . . . . 10  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
5958rexlimdvaa 2791 . . . . . . . . 9  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  ( e  /  2 ) ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  ( e  /  2 ) )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
6048, 59syld 42 . . . . . . . 8  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
6160ralrimdva 2756 . . . . . . 7  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  d )  -> 
( A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
6261impr 603 . . . . . 6  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )  ->  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
63 oveq1 6047 . . . . . . . . . . . 12  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  (
c  /  e )  =  ( ( ( 2  x.  b )  +  ( log `  2
) )  /  e
) )
6463fveq2d 5691 . . . . . . . . . . 11  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( exp `  ( c  / 
e ) )  =  ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) )
6564oveq1d 6055 . . . . . . . . . 10  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  (
( exp `  (
c  /  e ) ) [,)  +oo )  =  ( ( exp `  ( ( ( 2  x.  b )  +  ( log `  2
) )  /  e
) ) [,)  +oo ) )
6665raleqdv 2870 . . . . . . . . 9  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( A. k  e.  (
( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
6766rexbidv 2687 . . . . . . . 8  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
6867ralbidv 2686 . . . . . . 7  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( A. e  e.  (
0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( c  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( l  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
)  <->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( l  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
69 oveq1 6047 . . . . . . . . . . . . . . . 16  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
l  x.  e )  =  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )
7069oveq2d 6056 . . . . . . . . . . . . . . 15  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
1  +  ( l  x.  e ) )  =  ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) ) )
7170oveq1d 6055 . . . . . . . . . . . . . 14  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( 1  +  ( l  x.  e ) )  x.  z )  =  ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) )
7271breq1d 4182 . . . . . . . . . . . . 13  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y )  <->  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) ) )
7372anbi2d 685 . . . . . . . . . . . 12  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  <->  ( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) ) ) )
7471oveq2d 6056 . . . . . . . . . . . . 13  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) )  =  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) )
7574raleqdv 2870 . . . . . . . . . . . 12  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( A. u  e.  (
z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  e  <->  A. u  e.  ( z [,] (
( 1  +  ( ( ( 1  / 
4 )  /  (
d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  e )
)
7673, 75anbi12d 692 . . . . . . . . . . 11  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( ( y  < 
z  /\  ( (
1  +  ( l  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
)  <->  ( ( y  <  z  /\  (
( 1  +  ( ( ( 1  / 
4 )  /  (
d  +  3 ) )  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
7776rexbidv 2687 . . . . . . . . . 10  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( ( ( 1  / 
4 )  /  (
d  +  3 ) )  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
7877ralbidv 2686 . . . . . . . . 9  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
7978rexralbidv 2710 . . . . . . . 8  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
8079ralbidv 2686 . . . . . . 7  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( A. e  e.  (
0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( l  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
)  <->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
8168, 80rspc2ev 3020 . . . . . 6  |-  ( ( ( ( 2  x.  b )  +  ( log `  2 ) )  e.  RR+  /\  (
( 1  /  4
)  /  ( d  +  3 ) )  e.  ( 0 (,) 1 )  /\  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1 ) A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
8214, 18, 62, 81syl3anc 1184 . . . . 5  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
8382ex 424 . . . 4  |-  ( ( d  e.  RR+  /\  b  e.  RR+ )  ->  (
( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
)  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
8483rexlimivv 2795 . . 3  |-  ( E. d  e.  RR+  E. b  e.  RR+  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
)  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
854, 84sylbir 205 . 2  |-  ( ( E. d  e.  RR+  A. x  e.  RR+  ( abs `  ( ( R `
 x )  /  x ) )  <_ 
d  /\  E. b  e.  RR+  A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
)  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
862, 3, 85mp2an 654 1  |-  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   class class class wbr 4172    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    +oocpnf 9073   RR*cxr 9075    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   2c2 10005   3c3 10006   4c4 10007   RR+crp 10568   (,)cioo 10872   [,)cico 10874   [,]cicc 10875   abscabs 11994   expce 12619   logclog 20405  ψcchp 20828
This theorem is referenced by:  pnt3  21259
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-o1 12239  df-lo1 12240  df-sum 12435  df-ef 12625  df-e 12626  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-cxp 20408  df-em 20784  df-cht 20832  df-vma 20833  df-chp 20834  df-ppi 20835  df-mu 20836
  Copyright terms: Public domain W3C validator