MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt3 Structured version   Unicode version

Theorem pnt3 23518
Description: The Prime Number Theorem, version 3: the second Chebyshev function tends asymptotically to  x. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt3  |-  ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  ~~> r  1

Proof of Theorem pnt3
Dummy variables  a 
b  c  e  f  g  k  l  r  u  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2460 . . 3  |-  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) )  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) )
21pntrmax 23470 . 2  |-  E. b  e.  RR+  A. r  e.  RR+  ( abs `  (
( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  r
)  /  r ) )  <_  b
31pntibnd 23499 . . . 4  |-  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. r  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
r (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e )
4 simpll 753 . . . . . . 7  |-  ( ( ( b  e.  RR+  /\ 
A. r  e.  RR+  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 r )  / 
r ) )  <_ 
b )  /\  (
( c  e.  RR+  /\  l  e.  ( 0 (,) 1 ) )  /\  A. e  e.  ( 0 (,) 1
) E. r  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
r (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) ) )  ->  b  e.  RR+ )
5 simplr 754 . . . . . . . 8  |-  ( ( ( b  e.  RR+  /\ 
A. r  e.  RR+  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 r )  / 
r ) )  <_ 
b )  /\  (
( c  e.  RR+  /\  l  e.  ( 0 (,) 1 ) )  /\  A. e  e.  ( 0 (,) 1
) E. r  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
r (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) ) )  ->  A. r  e.  RR+  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 r )  / 
r ) )  <_ 
b )
6 fveq2 5857 . . . . . . . . . . . 12  |-  ( r  =  x  ->  (
( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 r )  =  ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  x
) )
7 id 22 . . . . . . . . . . . 12  |-  ( r  =  x  ->  r  =  x )
86, 7oveq12d 6293 . . . . . . . . . . 11  |-  ( r  =  x  ->  (
( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  r
)  /  r )  =  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  x
)  /  x ) )
98fveq2d 5861 . . . . . . . . . 10  |-  ( r  =  x  ->  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  r
)  /  r ) )  =  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  x
)  /  x ) ) )
109breq1d 4450 . . . . . . . . 9  |-  ( r  =  x  ->  (
( abs `  (
( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  r
)  /  r ) )  <_  b  <->  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  x
)  /  x ) )  <_  b )
)
1110cbvralv 3081 . . . . . . . 8  |-  ( A. r  e.  RR+  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  r
)  /  r ) )  <_  b  <->  A. x  e.  RR+  ( abs `  (
( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  x
)  /  x ) )  <_  b )
125, 11sylib 196 . . . . . . 7  |-  ( ( ( b  e.  RR+  /\ 
A. r  e.  RR+  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 r )  / 
r ) )  <_ 
b )  /\  (
( c  e.  RR+  /\  l  e.  ( 0 (,) 1 ) )  /\  A. e  e.  ( 0 (,) 1
) E. r  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
r (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) ) )  ->  A. x  e.  RR+  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 x )  /  x ) )  <_ 
b )
13 simprll 761 . . . . . . 7  |-  ( ( ( b  e.  RR+  /\ 
A. r  e.  RR+  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 r )  / 
r ) )  <_ 
b )  /\  (
( c  e.  RR+  /\  l  e.  ( 0 (,) 1 ) )  /\  A. e  e.  ( 0 (,) 1
) E. r  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
r (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) ) )  ->  c  e.  RR+ )
14 simprlr 762 . . . . . . 7  |-  ( ( ( b  e.  RR+  /\ 
A. r  e.  RR+  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 r )  / 
r ) )  <_ 
b )  /\  (
( c  e.  RR+  /\  l  e.  ( 0 (,) 1 ) )  /\  A. e  e.  ( 0 (,) 1
) E. r  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
r (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) ) )  ->  l  e.  ( 0 (,) 1 ) )
15 eqid 2460 . . . . . . 7  |-  ( b  +  1 )  =  ( b  +  1 )
16 eqid 2460 . . . . . . 7  |-  ( ( 1  -  ( 1  /  ( b  +  1 ) ) )  x.  ( ( l  /  (; 3 2  x.  c
) )  /  (
( b  +  1 ) ^ 2 ) ) )  =  ( ( 1  -  (
1  /  ( b  +  1 ) ) )  x.  ( ( l  /  (; 3 2  x.  c
) )  /  (
( b  +  1 ) ^ 2 ) ) )
17 simprr 756 . . . . . . . 8  |-  ( ( ( b  e.  RR+  /\ 
A. r  e.  RR+  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 r )  / 
r ) )  <_ 
b )  /\  (
( c  e.  RR+  /\  l  e.  ( 0 (,) 1 ) )  /\  A. e  e.  ( 0 (,) 1
) E. r  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
r (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) ) )  ->  A. e  e.  ( 0 (,) 1 ) E. r  e.  RR+  A. k  e.  ( ( exp `  ( c  /  e ) ) [,) +oo ) A. y  e.  ( r (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( l  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) )
18 breq2 4444 . . . . . . . . . . . . . . . . 17  |-  ( z  =  g  ->  (
y  <  z  <->  y  <  g ) )
19 oveq2 6283 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  g  ->  (
( 1  +  ( l  x.  e ) )  x.  z )  =  ( ( 1  +  ( l  x.  e ) )  x.  g ) )
2019breq1d 4450 . . . . . . . . . . . . . . . . 17  |-  ( z  =  g  ->  (
( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y )  <->  ( (
1  +  ( l  x.  e ) )  x.  g )  < 
( k  x.  y
) ) )
2118, 20anbi12d 710 . . . . . . . . . . . . . . . 16  |-  ( z  =  g  ->  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  <->  ( y  <  g  /\  ( ( 1  +  ( l  x.  e ) )  x.  g )  < 
( k  x.  y
) ) ) )
22 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  g  ->  z  =  g )
2322, 19oveq12d 6293 . . . . . . . . . . . . . . . . 17  |-  ( z  =  g  ->  (
z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) )  =  ( g [,] ( ( 1  +  ( l  x.  e
) )  x.  g
) ) )
2423raleqdv 3057 . . . . . . . . . . . . . . . 16  |-  ( z  =  g  ->  ( A. u  e.  (
z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  (
( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  u
)  /  u ) )  <_  e  <->  A. u  e.  ( g [,] (
( 1  +  ( l  x.  e ) )  x.  g ) ) ( abs `  (
( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  u
)  /  u ) )  <_  e )
)
2521, 24anbi12d 710 . . . . . . . . . . . . . . 15  |-  ( z  =  g  ->  (
( ( y  < 
z  /\  ( (
1  +  ( l  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
) )  x.  z
) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  u
)  /  u ) )  <_  e )  <->  ( ( y  <  g  /\  ( ( 1  +  ( l  x.  e
) )  x.  g
)  <  ( k  x.  y ) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e ) )  x.  g ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) ) )
2625cbvrexv 3082 . . . . . . . . . . . . . 14  |-  ( E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e )  <->  E. g  e.  RR+  ( ( y  <  g  /\  (
( 1  +  ( l  x.  e ) )  x.  g )  <  ( k  x.  y ) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e ) )  x.  g ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) )
27 breq1 4443 . . . . . . . . . . . . . . . . 17  |-  ( y  =  f  ->  (
y  <  g  <->  f  <  g ) )
28 oveq2 6283 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  f  ->  (
k  x.  y )  =  ( k  x.  f ) )
2928breq2d 4452 . . . . . . . . . . . . . . . . 17  |-  ( y  =  f  ->  (
( ( 1  +  ( l  x.  e
) )  x.  g
)  <  ( k  x.  y )  <->  ( (
1  +  ( l  x.  e ) )  x.  g )  < 
( k  x.  f
) ) )
3027, 29anbi12d 710 . . . . . . . . . . . . . . . 16  |-  ( y  =  f  ->  (
( y  <  g  /\  ( ( 1  +  ( l  x.  e
) )  x.  g
)  <  ( k  x.  y ) )  <->  ( f  <  g  /\  ( ( 1  +  ( l  x.  e ) )  x.  g )  < 
( k  x.  f
) ) ) )
3130anbi1d 704 . . . . . . . . . . . . . . 15  |-  ( y  =  f  ->  (
( ( y  < 
g  /\  ( (
1  +  ( l  x.  e ) )  x.  g )  < 
( k  x.  y
) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e
) )  x.  g
) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  u
)  /  u ) )  <_  e )  <->  ( ( f  <  g  /\  ( ( 1  +  ( l  x.  e
) )  x.  g
)  <  ( k  x.  f ) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e ) )  x.  g ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) ) )
3231rexbidv 2966 . . . . . . . . . . . . . 14  |-  ( y  =  f  ->  ( E. g  e.  RR+  (
( y  <  g  /\  ( ( 1  +  ( l  x.  e
) )  x.  g
)  <  ( k  x.  y ) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e ) )  x.  g ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e )  <->  E. g  e.  RR+  ( ( f  <  g  /\  (
( 1  +  ( l  x.  e ) )  x.  g )  <  ( k  x.  f ) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e ) )  x.  g ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) ) )
3326, 32syl5bb 257 . . . . . . . . . . . . 13  |-  ( y  =  f  ->  ( E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e )  <->  E. g  e.  RR+  ( ( f  <  g  /\  (
( 1  +  ( l  x.  e ) )  x.  g )  <  ( k  x.  f ) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e ) )  x.  g ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) ) )
3433cbvralv 3081 . . . . . . . . . . . 12  |-  ( A. y  e.  ( r (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( l  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e )  <->  A. f  e.  ( r (,) +oo ) E. g  e.  RR+  ( ( f  < 
g  /\  ( (
1  +  ( l  x.  e ) )  x.  g )  < 
( k  x.  f
) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e
) )  x.  g
) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  u
)  /  u ) )  <_  e )
)
35 oveq1 6282 . . . . . . . . . . . . 13  |-  ( r  =  x  ->  (
r (,) +oo )  =  ( x (,) +oo ) )
3635raleqdv 3057 . . . . . . . . . . . 12  |-  ( r  =  x  ->  ( A. f  e.  (
r (,) +oo ) E. g  e.  RR+  (
( f  <  g  /\  ( ( 1  +  ( l  x.  e
) )  x.  g
)  <  ( k  x.  f ) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e ) )  x.  g ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e )  <->  A. f  e.  ( x (,) +oo ) E. g  e.  RR+  ( ( f  < 
g  /\  ( (
1  +  ( l  x.  e ) )  x.  g )  < 
( k  x.  f
) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e
) )  x.  g
) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  u
)  /  u ) )  <_  e )
) )
3734, 36syl5bb 257 . . . . . . . . . . 11  |-  ( r  =  x  ->  ( A. y  e.  (
r (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e )  <->  A. f  e.  ( x (,) +oo ) E. g  e.  RR+  ( ( f  < 
g  /\  ( (
1  +  ( l  x.  e ) )  x.  g )  < 
( k  x.  f
) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e
) )  x.  g
) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  u
)  /  u ) )  <_  e )
) )
3837ralbidv 2896 . . . . . . . . . 10  |-  ( r  =  x  ->  ( A. k  e.  (
( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
r (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e )  <->  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. f  e.  (
x (,) +oo ) E. g  e.  RR+  (
( f  <  g  /\  ( ( 1  +  ( l  x.  e
) )  x.  g
)  <  ( k  x.  f ) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e ) )  x.  g ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) ) )
3938cbvrexv 3082 . . . . . . . . 9  |-  ( E. r  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
r (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e )  <->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. f  e.  (
x (,) +oo ) E. g  e.  RR+  (
( f  <  g  /\  ( ( 1  +  ( l  x.  e
) )  x.  g
)  <  ( k  x.  f ) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e ) )  x.  g ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) )
4039ralbii 2888 . . . . . . . 8  |-  ( A. e  e.  ( 0 (,) 1 ) E. r  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
r (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e )  <->  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. f  e.  (
x (,) +oo ) E. g  e.  RR+  (
( f  <  g  /\  ( ( 1  +  ( l  x.  e
) )  x.  g
)  <  ( k  x.  f ) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e ) )  x.  g ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) )
4117, 40sylib 196 . . . . . . 7  |-  ( ( ( b  e.  RR+  /\ 
A. r  e.  RR+  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 r )  / 
r ) )  <_ 
b )  /\  (
( c  e.  RR+  /\  l  e.  ( 0 (,) 1 ) )  /\  A. e  e.  ( 0 (,) 1
) E. r  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
r (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) ) )  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( c  /  e ) ) [,) +oo ) A. f  e.  ( x (,) +oo ) E. g  e.  RR+  ( ( f  <  g  /\  (
( 1  +  ( l  x.  e ) )  x.  g )  <  ( k  x.  f ) )  /\  A. u  e.  ( g [,] ( ( 1  +  ( l  x.  e ) )  x.  g ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) )
421, 4, 12, 13, 14, 15, 16, 41pntleml 23517 . . . . . 6  |-  ( ( ( b  e.  RR+  /\ 
A. r  e.  RR+  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 r )  / 
r ) )  <_ 
b )  /\  (
( c  e.  RR+  /\  l  e.  ( 0 (,) 1 ) )  /\  A. e  e.  ( 0 (,) 1
) E. r  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
r (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e ) ) )  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  ~~> r  1 )
4342expr 615 . . . . 5  |-  ( ( ( b  e.  RR+  /\ 
A. r  e.  RR+  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 r )  / 
r ) )  <_ 
b )  /\  (
c  e.  RR+  /\  l  e.  ( 0 (,) 1
) ) )  -> 
( A. e  e.  ( 0 (,) 1
) E. r  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,) +oo ) A. y  e.  (
r (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e )  ->  (
x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  ~~> r  1 ) )
4443rexlimdvva 2955 . . . 4  |-  ( ( b  e.  RR+  /\  A. r  e.  RR+  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  r
)  /  r ) )  <_  b )  ->  ( E. c  e.  RR+  E. l  e.  ( 0 (,) 1 ) A. e  e.  ( 0 (,) 1 ) E. r  e.  RR+  A. k  e.  ( ( exp `  ( c  /  e ) ) [,) +oo ) A. y  e.  ( r (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( l  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) ) `
 u )  /  u ) )  <_ 
e )  ->  (
x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  ~~> r  1 ) )
453, 44mpi 17 . . 3  |-  ( ( b  e.  RR+  /\  A. r  e.  RR+  ( abs `  ( ( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  r
)  /  r ) )  <_  b )  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
4645rexlimiva 2944 . 2  |-  ( E. b  e.  RR+  A. r  e.  RR+  ( abs `  (
( ( a  e.  RR+  |->  ( (ψ `  a )  -  a
) ) `  r
)  /  r ) )  <_  b  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  ~~> r  1 )
472, 46ax-mp 5 1  |-  ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  ~~> r  1
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    e. wcel 1762   A.wral 2807   E.wrex 2808   class class class wbr 4440    |-> cmpt 4498   ` cfv 5579  (class class class)co 6275   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486   +oocpnf 9614    < clt 9617    <_ cle 9618    - cmin 9794    / cdiv 10195   2c2 10574   3c3 10575  ;cdc 10965   RR+crp 11209   (,)cioo 11518   [,)cico 11520   [,]cicc 11521   ^cexp 12122   abscabs 13017    ~~> r crli 13257   expce 13648  ψcchp 23087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-disj 4411  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-ioc 11523  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-fac 12309  df-bc 12336  df-hash 12361  df-shft 12850  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-limsup 13243  df-clim 13260  df-rlim 13261  df-o1 13262  df-lo1 13263  df-sum 13458  df-ef 13654  df-e 13655  df-sin 13656  df-cos 13657  df-pi 13659  df-dvds 13837  df-gcd 13993  df-prm 14066  df-pc 14209  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-hom 14568  df-cco 14569  df-rest 14667  df-topn 14668  df-0g 14686  df-gsum 14687  df-topgen 14688  df-pt 14689  df-prds 14692  df-xrs 14746  df-qtop 14751  df-imas 14752  df-xps 14754  df-mre 14830  df-mrc 14831  df-acs 14833  df-mnd 15721  df-submnd 15771  df-mulg 15854  df-cntz 16143  df-cmn 16589  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-fbas 18180  df-fg 18181  df-cnfld 18185  df-top 19159  df-bases 19161  df-topon 19162  df-topsp 19163  df-cld 19279  df-ntr 19280  df-cls 19281  df-nei 19358  df-lp 19396  df-perf 19397  df-cn 19487  df-cnp 19488  df-haus 19575  df-cmp 19646  df-tx 19791  df-hmeo 19984  df-fil 20075  df-fm 20167  df-flim 20168  df-flf 20169  df-xms 20551  df-ms 20552  df-tms 20553  df-cncf 21110  df-limc 21998  df-dv 21999  df-log 22665  df-cxp 22666  df-em 23043  df-cht 23091  df-vma 23092  df-chp 23093  df-ppi 23094  df-mu 23095
This theorem is referenced by:  pnt2  23519
  Copyright terms: Public domain W3C validator