Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnonsingN Structured version   Unicode version

Theorem pnonsingN 33600
Description: The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polat.a  |-  A  =  ( Atoms `  K )
2polat.p  |-  P  =  ( _|_P `  K )
Assertion
Ref Expression
pnonsingN  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( X  i^i  ( P `  X )
)  =  (/) )

Proof of Theorem pnonsingN
StepHypRef Expression
1 2polat.a . . . . 5  |-  A  =  ( Atoms `  K )
2 2polat.p . . . . 5  |-  P  =  ( _|_P `  K )
31, 22polssN 33582 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  X  C_  ( P `  ( P `  X ) ) )
4 ssrin 3594 . . . 4  |-  ( X 
C_  ( P `  ( P `  X ) )  ->  ( X  i^i  ( P `  X
) )  C_  (
( P `  ( P `  X )
)  i^i  ( P `  X ) ) )
53, 4syl 16 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( X  i^i  ( P `  X )
)  C_  ( ( P `  ( P `  X ) )  i^i  ( P `  X
) ) )
6 eqid 2443 . . . . . 6  |-  ( lub `  K )  =  ( lub `  K )
7 eqid 2443 . . . . . 6  |-  ( pmap `  K )  =  (
pmap `  K )
86, 1, 7, 22polvalN 33581 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( P `  ( P `  X )
)  =  ( (
pmap `  K ) `  ( ( lub `  K
) `  X )
) )
9 eqid 2443 . . . . . 6  |-  ( oc
`  K )  =  ( oc `  K
)
106, 9, 1, 7, 2polval2N 33573 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( P `  X
)  =  ( (
pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) )
118, 10ineq12d 3572 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( P `  ( P `  X ) )  i^i  ( P `
 X ) )  =  ( ( (
pmap `  K ) `  ( ( lub `  K
) `  X )
)  i^i  ( ( pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) ) )
12 hlop 33030 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OP )
1312adantr 465 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  K  e.  OP )
14 hlclat 33026 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  CLat )
15 eqid 2443 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
1615, 1atssbase 32958 . . . . . . . . 9  |-  A  C_  ( Base `  K )
17 sstr 3383 . . . . . . . . 9  |-  ( ( X  C_  A  /\  A  C_  ( Base `  K
) )  ->  X  C_  ( Base `  K
) )
1816, 17mpan2 671 . . . . . . . 8  |-  ( X 
C_  A  ->  X  C_  ( Base `  K
) )
1915, 6clatlubcl 15301 . . . . . . . 8  |-  ( ( K  e.  CLat  /\  X  C_  ( Base `  K
) )  ->  (
( lub `  K
) `  X )  e.  ( Base `  K
) )
2014, 18, 19syl2an 477 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( lub `  K
) `  X )  e.  ( Base `  K
) )
21 eqid 2443 . . . . . . . 8  |-  ( meet `  K )  =  (
meet `  K )
22 eqid 2443 . . . . . . . 8  |-  ( 0.
`  K )  =  ( 0. `  K
)
2315, 9, 21, 22opnoncon 32876 . . . . . . 7  |-  ( ( K  e.  OP  /\  ( ( lub `  K
) `  X )  e.  ( Base `  K
) )  ->  (
( ( lub `  K
) `  X )
( meet `  K )
( ( oc `  K ) `  (
( lub `  K
) `  X )
) )  =  ( 0. `  K ) )
2413, 20, 23syl2anc 661 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( ( lub `  K ) `  X
) ( meet `  K
) ( ( oc
`  K ) `  ( ( lub `  K
) `  X )
) )  =  ( 0. `  K ) )
2524fveq2d 5714 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( pmap `  K
) `  ( (
( lub `  K
) `  X )
( meet `  K )
( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) )  =  ( ( pmap `  K
) `  ( 0. `  K ) ) )
26 simpl 457 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  K  e.  HL )
2715, 9opoccl 32862 . . . . . . 7  |-  ( ( K  e.  OP  /\  ( ( lub `  K
) `  X )  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( ( lub `  K ) `  X ) )  e.  ( Base `  K
) )
2813, 20, 27syl2anc 661 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( oc `  K ) `  (
( lub `  K
) `  X )
)  e.  ( Base `  K ) )
2915, 21, 1, 7pmapmeet 33440 . . . . . 6  |-  ( ( K  e.  HL  /\  ( ( lub `  K
) `  X )  e.  ( Base `  K
)  /\  ( ( oc `  K ) `  ( ( lub `  K
) `  X )
)  e.  ( Base `  K ) )  -> 
( ( pmap `  K
) `  ( (
( lub `  K
) `  X )
( meet `  K )
( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) )  =  ( ( ( pmap `  K ) `  (
( lub `  K
) `  X )
)  i^i  ( ( pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) ) )
3026, 20, 28, 29syl3anc 1218 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( pmap `  K
) `  ( (
( lub `  K
) `  X )
( meet `  K )
( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) )  =  ( ( ( pmap `  K ) `  (
( lub `  K
) `  X )
)  i^i  ( ( pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) ) )
31 hlatl 33028 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  AtLat )
3231adantr 465 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  K  e.  AtLat )
3322, 7pmap0 33432 . . . . . 6  |-  ( K  e.  AtLat  ->  ( ( pmap `  K ) `  ( 0. `  K ) )  =  (/) )
3432, 33syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( pmap `  K
) `  ( 0. `  K ) )  =  (/) )
3525, 30, 343eqtr3d 2483 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( ( pmap `  K ) `  (
( lub `  K
) `  X )
)  i^i  ( ( pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) )  =  (/) )
3611, 35eqtrd 2475 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( P `  ( P `  X ) )  i^i  ( P `
 X ) )  =  (/) )
375, 36sseqtrd 3411 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( X  i^i  ( P `  X )
)  C_  (/) )
38 ss0b 3686 . 2  |-  ( ( X  i^i  ( P `
 X ) ) 
C_  (/)  <->  ( X  i^i  ( P `  X ) )  =  (/) )
3937, 38sylib 196 1  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( X  i^i  ( P `  X )
)  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    i^i cin 3346    C_ wss 3347   (/)c0 3656   ` cfv 5437  (class class class)co 6110   Basecbs 14193   occoc 14265   lubclub 15131   meetcmee 15134   0.cp0 15226   CLatccla 15296   OPcops 32840   Atomscatm 32931   AtLatcal 32932   HLchlt 33018   pmapcpmap 33164   _|_PcpolN 33569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-riotaBAD 32627
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2739  df-rex 2740  df-reu 2741  df-rmo 2742  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-op 3903  df-uni 4111  df-iun 4192  df-iin 4193  df-br 4312  df-opab 4370  df-mpt 4371  df-id 4655  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-riota 6071  df-ov 6113  df-oprab 6114  df-undef 6811  df-poset 15135  df-plt 15147  df-lub 15163  df-glb 15164  df-join 15165  df-meet 15166  df-p0 15228  df-p1 15229  df-lat 15235  df-clat 15297  df-oposet 32844  df-ol 32846  df-oml 32847  df-covers 32934  df-ats 32935  df-atl 32966  df-cvlat 32990  df-hlat 33019  df-pmap 33171  df-polarityN 33570
This theorem is referenced by:  osumcllem4N  33626  pexmidN  33636  pexmidlem1N  33637
  Copyright terms: Public domain W3C validator