MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnei Structured version   Unicode version

Theorem pnfnei 20228
Description: A neighborhood of +oo contains an unbounded interval based at a real number. Together with xrtgioo 21816 (which describes neighborhoods of  RR) and mnfnei 20229, this gives all "negative" topological information ensuring that it is not too fine (and of course iooordt 20225 and similar ensure that it has all the sets we want). (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
pnfnei  |-  ( ( A  e.  (ordTop `  <_  )  /\ +oo  e.  A )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A )
Distinct variable group:    x, A

Proof of Theorem pnfnei
Dummy variables  a 
b  c  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2423 . . . 4  |-  ran  (
y  e.  RR*  |->  ( y (,] +oo ) )  =  ran  ( y  e.  RR*  |->  ( y (,] +oo ) )
2 eqid 2423 . . . 4  |-  ran  (
y  e.  RR*  |->  ( -oo [,) y ) )  =  ran  ( y  e. 
RR*  |->  ( -oo [,) y ) )
3 eqid 2423 . . . 4  |-  ran  (,)  =  ran  (,)
41, 2, 3leordtval 20221 . . 3  |-  (ordTop `  <_  )  =  ( topGen `  ( ( ran  (
y  e.  RR*  |->  ( y (,] +oo ) )  u.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) ) )  u.  ran  (,) )
)
54eleq2i 2501 . 2  |-  ( A  e.  (ordTop `  <_  )  <-> 
A  e.  ( topGen `  ( ( ran  (
y  e.  RR*  |->  ( y (,] +oo ) )  u.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) ) )  u.  ran  (,) )
) )
6 tg2 19972 . . 3  |-  ( ( A  e.  ( topGen `  ( ( ran  (
y  e.  RR*  |->  ( y (,] +oo ) )  u.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) ) )  u.  ran  (,) )
)  /\ +oo  e.  A
)  ->  E. u  e.  ( ( ran  (
y  e.  RR*  |->  ( y (,] +oo ) )  u.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) ) )  u.  ran  (,) )
( +oo  e.  u  /\  u  C_  A ) )
7 elun 3607 . . . . 5  |-  ( u  e.  ( ( ran  ( y  e.  RR*  |->  ( y (,] +oo ) )  u.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) ) )  u.  ran  (,) )  <->  ( u  e.  ( ran  ( y  e.  RR*  |->  ( y (,] +oo ) )  u.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) ) )  \/  u  e.  ran  (,) ) )
8 elun 3607 . . . . . . 7  |-  ( u  e.  ( ran  (
y  e.  RR*  |->  ( y (,] +oo ) )  u.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) ) )  <-> 
( u  e.  ran  ( y  e.  RR*  |->  ( y (,] +oo ) )  \/  u  e.  ran  ( y  e. 
RR*  |->  ( -oo [,) y ) ) ) )
9 vex 3085 . . . . . . . . . 10  |-  u  e. 
_V
10 eqid 2423 . . . . . . . . . . 11  |-  ( y  e.  RR*  |->  ( y (,] +oo ) )  =  ( y  e. 
RR*  |->  ( y (,] +oo ) )
1110elrnmpt 5098 . . . . . . . . . 10  |-  ( u  e.  _V  ->  (
u  e.  ran  (
y  e.  RR*  |->  ( y (,] +oo ) )  <->  E. y  e.  RR*  u  =  ( y (,] +oo ) ) )
129, 11ax-mp 5 . . . . . . . . 9  |-  ( u  e.  ran  ( y  e.  RR*  |->  ( y (,] +oo ) )  <->  E. y  e.  RR*  u  =  ( y (,] +oo ) )
13 mnfxr 11416 . . . . . . . . . . . . . 14  |- -oo  e.  RR*
1413a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  -> -oo  e.  RR* )
15 simprl 763 . . . . . . . . . . . . . 14  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  -> 
y  e.  RR* )
16 0xr 9689 . . . . . . . . . . . . . 14  |-  0  e.  RR*
17 ifcl 3952 . . . . . . . . . . . . . 14  |-  ( ( y  e.  RR*  /\  0  e.  RR* )  ->  if ( 0  <_  y ,  y ,  0 )  e.  RR* )
1815, 16, 17sylancl 667 . . . . . . . . . . . . 13  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  ->  if ( 0  <_  y ,  y ,  0 )  e.  RR* )
19 pnfxr 11414 . . . . . . . . . . . . . 14  |- +oo  e.  RR*
2019a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  -> +oo  e.  RR* )
21 xrmax1 11472 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR*  /\  y  e.  RR* )  ->  0  <_  if ( 0  <_ 
y ,  y ,  0 ) )
2216, 15, 21sylancr 668 . . . . . . . . . . . . . 14  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  -> 
0  <_  if (
0  <_  y , 
y ,  0 ) )
23 ge0gtmnf 11469 . . . . . . . . . . . . . 14  |-  ( ( if ( 0  <_ 
y ,  y ,  0 )  e.  RR*  /\  0  <_  if (
0  <_  y , 
y ,  0 ) )  -> -oo  <  if ( 0  <_  y ,  y ,  0 ) )
2418, 22, 23syl2anc 666 . . . . . . . . . . . . 13  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  -> -oo  <  if ( 0  <_  y ,  y ,  0 ) )
25 simpll 759 . . . . . . . . . . . . . . . . 17  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  -> +oo  e.  u )
26 simprr 765 . . . . . . . . . . . . . . . . 17  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  ->  u  =  ( y (,] +oo ) )
2725, 26eleqtrd 2513 . . . . . . . . . . . . . . . 16  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  -> +oo  e.  ( y (,] +oo ) )
28 elioc1 11680 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR*  /\ +oo  e.  RR* )  ->  ( +oo  e.  ( y (,] +oo )  <->  ( +oo  e.  RR* 
/\  y  < +oo  /\ +oo  <_ +oo ) ) )
2915, 19, 28sylancl 667 . . . . . . . . . . . . . . . 16  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  -> 
( +oo  e.  (
y (,] +oo )  <->  ( +oo  e.  RR*  /\  y  < +oo  /\ +oo  <_ +oo ) ) )
3027, 29mpbid 214 . . . . . . . . . . . . . . 15  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  -> 
( +oo  e.  RR*  /\  y  < +oo  /\ +oo  <_ +oo ) )
3130simp2d 1019 . . . . . . . . . . . . . 14  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  -> 
y  < +oo )
32 0ltpnf 11426 . . . . . . . . . . . . . 14  |-  0  < +oo
33 breq1 4424 . . . . . . . . . . . . . . 15  |-  ( y  =  if ( 0  <_  y ,  y ,  0 )  -> 
( y  < +oo  <->  if ( 0  <_  y ,  y ,  0 )  < +oo )
)
34 breq1 4424 . . . . . . . . . . . . . . 15  |-  ( 0  =  if ( 0  <_  y ,  y ,  0 )  -> 
( 0  < +oo  <->  if ( 0  <_  y ,  y ,  0 )  < +oo )
)
3533, 34ifboth 3946 . . . . . . . . . . . . . 14  |-  ( ( y  < +oo  /\  0  < +oo )  ->  if ( 0  <_  y ,  y ,  0 )  < +oo )
3631, 32, 35sylancl 667 . . . . . . . . . . . . 13  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  ->  if ( 0  <_  y ,  y ,  0 )  < +oo )
37 xrre2 11467 . . . . . . . . . . . . 13  |-  ( ( ( -oo  e.  RR*  /\  if ( 0  <_ 
y ,  y ,  0 )  e.  RR*  /\ +oo  e.  RR* )  /\  ( -oo  <  if ( 0  <_  y ,  y ,  0 )  /\  if ( 0  <_  y ,  y ,  0 )  < +oo )
)  ->  if (
0  <_  y , 
y ,  0 )  e.  RR )
3814, 18, 20, 24, 36, 37syl32anc 1273 . . . . . . . . . . . 12  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  ->  if ( 0  <_  y ,  y ,  0 )  e.  RR )
39 xrmax2 11473 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR*  /\  y  e.  RR* )  ->  y  <_  if ( 0  <_ 
y ,  y ,  0 ) )
4016, 15, 39sylancr 668 . . . . . . . . . . . . . 14  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  -> 
y  <_  if (
0  <_  y , 
y ,  0 ) )
41 df-ioc 11642 . . . . . . . . . . . . . . 15  |-  (,]  =  ( a  e.  RR* ,  b  e.  RR*  |->  { c  e.  RR*  |  (
a  <  c  /\  c  <_  b ) } )
42 xrlelttr 11455 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR*  /\  if ( 0  <_  y ,  y ,  0 )  e.  RR*  /\  x  e.  RR* )  ->  (
( y  <_  if ( 0  <_  y ,  y ,  0 )  /\  if ( 0  <_  y , 
y ,  0 )  <  x )  -> 
y  <  x )
)
4341, 41, 42ixxss1 11655 . . . . . . . . . . . . . 14  |-  ( ( y  e.  RR*  /\  y  <_  if ( 0  <_ 
y ,  y ,  0 ) )  -> 
( if ( 0  <_  y ,  y ,  0 ) (,] +oo )  C_  ( y (,] +oo ) )
4415, 40, 43syl2anc 666 . . . . . . . . . . . . 13  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  -> 
( if ( 0  <_  y ,  y ,  0 ) (,] +oo )  C_  ( y (,] +oo ) )
45 simplr 761 . . . . . . . . . . . . . 14  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  ->  u  C_  A )
4626, 45eqsstr3d 3500 . . . . . . . . . . . . 13  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  -> 
( y (,] +oo )  C_  A )
4744, 46sstrd 3475 . . . . . . . . . . . 12  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  -> 
( if ( 0  <_  y ,  y ,  0 ) (,] +oo )  C_  A )
48 oveq1 6310 . . . . . . . . . . . . . 14  |-  ( x  =  if ( 0  <_  y ,  y ,  0 )  -> 
( x (,] +oo )  =  ( if ( 0  <_  y ,  y ,  0 ) (,] +oo )
)
4948sseq1d 3492 . . . . . . . . . . . . 13  |-  ( x  =  if ( 0  <_  y ,  y ,  0 )  -> 
( ( x (,] +oo )  C_  A  <->  ( if ( 0  <_  y ,  y ,  0 ) (,] +oo )  C_  A ) )
5049rspcev 3183 . . . . . . . . . . . 12  |-  ( ( if ( 0  <_ 
y ,  y ,  0 )  e.  RR  /\  ( if ( 0  <_  y ,  y ,  0 ) (,] +oo )  C_  A )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A )
5138, 47, 50syl2anc 666 . . . . . . . . . . 11  |-  ( ( ( +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,] +oo ) ) )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A )
5251rexlimdvaa 2919 . . . . . . . . . 10  |-  ( ( +oo  e.  u  /\  u  C_  A )  -> 
( E. y  e. 
RR*  u  =  ( y (,] +oo )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A ) )
5352com12 33 . . . . . . . . 9  |-  ( E. y  e.  RR*  u  =  ( y (,] +oo )  ->  ( ( +oo  e.  u  /\  u  C_  A )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A ) )
5412, 53sylbi 199 . . . . . . . 8  |-  ( u  e.  ran  ( y  e.  RR*  |->  ( y (,] +oo ) )  ->  ( ( +oo  e.  u  /\  u  C_  A )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A ) )
55 eqid 2423 . . . . . . . . . . 11  |-  ( y  e.  RR*  |->  ( -oo [,) y ) )  =  ( y  e.  RR*  |->  ( -oo [,) y ) )
5655elrnmpt 5098 . . . . . . . . . 10  |-  ( u  e.  _V  ->  (
u  e.  ran  (
y  e.  RR*  |->  ( -oo [,) y ) )  <->  E. y  e.  RR*  u  =  ( -oo [,) y ) ) )
579, 56ax-mp 5 . . . . . . . . 9  |-  ( u  e.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) )  <->  E. y  e.  RR*  u  =  ( -oo [,) y ) )
58 pnfnlt 11432 . . . . . . . . . . . . . 14  |-  ( y  e.  RR*  ->  -. +oo  <  y )
59 elico1 11681 . . . . . . . . . . . . . . . 16  |-  ( ( -oo  e.  RR*  /\  y  e.  RR* )  ->  ( +oo  e.  ( -oo [,) y )  <->  ( +oo  e.  RR*  /\ -oo  <_ +oo 
/\ +oo  <  y ) ) )
6013, 59mpan 675 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR*  ->  ( +oo  e.  ( -oo [,) y
)  <->  ( +oo  e.  RR* 
/\ -oo  <_ +oo  /\ +oo 
<  y ) ) )
61 simp3 1008 . . . . . . . . . . . . . . 15  |-  ( ( +oo  e.  RR*  /\ -oo  <_ +oo  /\ +oo  <  y )  -> +oo  <  y
)
6260, 61syl6bi 232 . . . . . . . . . . . . . 14  |-  ( y  e.  RR*  ->  ( +oo  e.  ( -oo [,) y
)  -> +oo  <  y
) )
6358, 62mtod 181 . . . . . . . . . . . . 13  |-  ( y  e.  RR*  ->  -. +oo  e.  ( -oo [,) y
) )
64 eleq2 2496 . . . . . . . . . . . . . 14  |-  ( u  =  ( -oo [,) y )  ->  ( +oo  e.  u  <-> +oo  e.  ( -oo [,) y ) ) )
6564notbid 296 . . . . . . . . . . . . 13  |-  ( u  =  ( -oo [,) y )  ->  ( -. +oo  e.  u  <->  -. +oo  e.  ( -oo [,) y ) ) )
6663, 65syl5ibrcom 226 . . . . . . . . . . . 12  |-  ( y  e.  RR*  ->  ( u  =  ( -oo [,) y )  ->  -. +oo  e.  u ) )
6766rexlimiv 2912 . . . . . . . . . . 11  |-  ( E. y  e.  RR*  u  =  ( -oo [,) y
)  ->  -. +oo  e.  u )
6867pm2.21d 110 . . . . . . . . . 10  |-  ( E. y  e.  RR*  u  =  ( -oo [,) y
)  ->  ( +oo  e.  u  ->  E. x  e.  RR  ( x (,] +oo )  C_  A ) )
6968adantrd 470 . . . . . . . . 9  |-  ( E. y  e.  RR*  u  =  ( -oo [,) y
)  ->  ( ( +oo  e.  u  /\  u  C_  A )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A ) )
7057, 69sylbi 199 . . . . . . . 8  |-  ( u  e.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) )  -> 
( ( +oo  e.  u  /\  u  C_  A
)  ->  E. x  e.  RR  ( x (,] +oo )  C_  A ) )
7154, 70jaoi 381 . . . . . . 7  |-  ( ( u  e.  ran  (
y  e.  RR*  |->  ( y (,] +oo ) )  \/  u  e.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) ) )  ->  (
( +oo  e.  u  /\  u  C_  A )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A ) )
728, 71sylbi 199 . . . . . 6  |-  ( u  e.  ( ran  (
y  e.  RR*  |->  ( y (,] +oo ) )  u.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) ) )  ->  ( ( +oo  e.  u  /\  u  C_  A )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A ) )
73 pnfnre 9684 . . . . . . . . . 10  |- +oo  e/  RR
7473neli 2761 . . . . . . . . 9  |-  -. +oo  e.  RR
75 elssuni 4246 . . . . . . . . . . 11  |-  ( u  e.  ran  (,)  ->  u 
C_  U. ran  (,) )
76 unirnioo 11736 . . . . . . . . . . 11  |-  RR  =  U. ran  (,)
7775, 76syl6sseqr 3512 . . . . . . . . . 10  |-  ( u  e.  ran  (,)  ->  u 
C_  RR )
7877sseld 3464 . . . . . . . . 9  |-  ( u  e.  ran  (,)  ->  ( +oo  e.  u  -> +oo  e.  RR ) )
7974, 78mtoi 182 . . . . . . . 8  |-  ( u  e.  ran  (,)  ->  -. +oo  e.  u )
8079pm2.21d 110 . . . . . . 7  |-  ( u  e.  ran  (,)  ->  ( +oo  e.  u  ->  E. x  e.  RR  ( x (,] +oo )  C_  A ) )
8180adantrd 470 . . . . . 6  |-  ( u  e.  ran  (,)  ->  ( ( +oo  e.  u  /\  u  C_  A )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A ) )
8272, 81jaoi 381 . . . . 5  |-  ( ( u  e.  ( ran  ( y  e.  RR*  |->  ( y (,] +oo ) )  u.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) ) )  \/  u  e.  ran  (,) )  -> 
( ( +oo  e.  u  /\  u  C_  A
)  ->  E. x  e.  RR  ( x (,] +oo )  C_  A ) )
837, 82sylbi 199 . . . 4  |-  ( u  e.  ( ( ran  ( y  e.  RR*  |->  ( y (,] +oo ) )  u.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) ) )  u.  ran  (,) )  ->  ( ( +oo  e.  u  /\  u  C_  A )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A ) )
8483rexlimiv 2912 . . 3  |-  ( E. u  e.  ( ( ran  ( y  e. 
RR*  |->  ( y (,] +oo ) )  u.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) ) )  u.  ran  (,) ) ( +oo  e.  u  /\  u  C_  A
)  ->  E. x  e.  RR  ( x (,] +oo )  C_  A )
856, 84syl 17 . 2  |-  ( ( A  e.  ( topGen `  ( ( ran  (
y  e.  RR*  |->  ( y (,] +oo ) )  u.  ran  ( y  e.  RR*  |->  ( -oo [,) y ) ) )  u.  ran  (,) )
)  /\ +oo  e.  A
)  ->  E. x  e.  RR  ( x (,] +oo )  C_  A )
865, 85sylanb 475 1  |-  ( ( A  e.  (ordTop `  <_  )  /\ +oo  e.  A )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869   E.wrex 2777   _Vcvv 3082    u. cun 3435    C_ wss 3437   ifcif 3910   U.cuni 4217   class class class wbr 4421    |-> cmpt 4480   ran crn 4852   ` cfv 5599  (class class class)co 6303   RRcr 9540   0cc0 9541   +oocpnf 9674   -oocmnf 9675   RR*cxr 9676    < clt 9677    <_ cle 9678   (,)cioo 11637   (,]cioc 11638   [,)cico 11639   topGenctg 15329  ordTopcordt 15390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-er 7369  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-fi 7929  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-ioo 11641  df-ioc 11642  df-ico 11643  df-icc 11644  df-topgen 15335  df-ordt 15392  df-ps 16439  df-tsr 16440  df-top 19913  df-bases 19914
This theorem is referenced by:  xrge0tsms  21844  xrlimcnp  23886  xrge0tsmsd  28550  pnfneige0  28759
  Copyright terms: Public domain W3C validator