MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pn0sr Structured version   Unicode version

Theorem pn0sr 9371
Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
pn0sr  |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )

Proof of Theorem pn0sr
StepHypRef Expression
1 1idsr 9368 . . 3  |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )
21oveq1d 6207 . 2  |-  ( A  e.  R.  ->  (
( A  .R  1R )  +R  ( A  .R  -1R ) )  =  ( A  +R  ( A  .R  -1R ) ) )
3 distrsr 9361 . . . 4  |-  ( A  .R  ( -1R  +R  1R ) )  =  ( ( A  .R  -1R )  +R  ( A  .R  1R ) )
4 m1p1sr 9362 . . . . 5  |-  ( -1R 
+R  1R )  =  0R
54oveq2i 6203 . . . 4  |-  ( A  .R  ( -1R  +R  1R ) )  =  ( A  .R  0R )
6 addcomsr 9357 . . . 4  |-  ( ( A  .R  -1R )  +R  ( A  .R  1R ) )  =  ( ( A  .R  1R )  +R  ( A  .R  -1R ) )
73, 5, 63eqtr3i 2488 . . 3  |-  ( A  .R  0R )  =  ( ( A  .R  1R )  +R  ( A  .R  -1R ) )
8 00sr 9369 . . 3  |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )
97, 8syl5eqr 2506 . 2  |-  ( A  e.  R.  ->  (
( A  .R  1R )  +R  ( A  .R  -1R ) )  =  0R )
102, 9eqtr3d 2494 1  |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758  (class class class)co 6192   R.cnr 9137   0Rc0r 9138   1Rc1r 9139   -1Rcm1r 9140    +R cplr 9141    .R cmr 9142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-inf2 7950
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-1o 7022  df-oadd 7026  df-omul 7027  df-er 7203  df-ec 7205  df-qs 7209  df-ni 9144  df-pli 9145  df-mi 9146  df-lti 9147  df-plpq 9180  df-mpq 9181  df-ltpq 9182  df-enq 9183  df-nq 9184  df-erq 9185  df-plq 9186  df-mq 9187  df-1nq 9188  df-rq 9189  df-ltnq 9190  df-np 9253  df-1p 9254  df-plp 9255  df-mp 9256  df-ltp 9257  df-plpr 9327  df-mpr 9328  df-enr 9329  df-nr 9330  df-plr 9331  df-mr 9332  df-0r 9334  df-1r 9335  df-m1r 9336
This theorem is referenced by:  negexsr  9372  sqgt0sr  9376  map2psrpr  9380  axrnegex  9432
  Copyright terms: Public domain W3C validator