MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrrn Structured version   Unicode version

Theorem pmtrrn 16271
Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
Assertion
Ref Expression
pmtrrn  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T `  P )  e.  R )

Proof of Theorem pmtrrn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptexg 6121 . . . . . . 7  |-  ( D  e.  V  ->  (
y  e.  D  |->  if ( y  e.  z ,  U. ( z 
\  { y } ) ,  y ) )  e.  _V )
21ralrimivw 2872 . . . . . 6  |-  ( D  e.  V  ->  A. z  e.  { x  e.  ~P D  |  x  ~~  2o }  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z  \  {
y } ) ,  y ) )  e. 
_V )
323ad2ant1 1012 . . . . 5  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  A. z  e.  { x  e.  ~P D  |  x  ~~  2o }  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z  \  {
y } ) ,  y ) )  e. 
_V )
4 eqid 2460 . . . . . 6  |-  ( z  e.  { x  e. 
~P D  |  x 
~~  2o }  |->  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z 
\  { y } ) ,  y ) ) )  =  ( z  e.  { x  e.  ~P D  |  x 
~~  2o }  |->  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z 
\  { y } ) ,  y ) ) )
54fnmpt 5698 . . . . 5  |-  ( A. z  e.  { x  e.  ~P D  |  x 
~~  2o }  (
y  e.  D  |->  if ( y  e.  z ,  U. ( z 
\  { y } ) ,  y ) )  e.  _V  ->  ( z  e.  { x  e.  ~P D  |  x 
~~  2o }  |->  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z 
\  { y } ) ,  y ) ) )  Fn  {
x  e.  ~P D  |  x  ~~  2o }
)
63, 5syl 16 . . . 4  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  (
z  e.  { x  e.  ~P D  |  x 
~~  2o }  |->  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z 
\  { y } ) ,  y ) ) )  Fn  {
x  e.  ~P D  |  x  ~~  2o }
)
7 pmtrrn.t . . . . . . 7  |-  T  =  (pmTrsp `  D )
87pmtrfval 16264 . . . . . 6  |-  ( D  e.  V  ->  T  =  ( z  e. 
{ x  e.  ~P D  |  x  ~~  2o }  |->  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z  \  {
y } ) ,  y ) ) ) )
983ad2ant1 1012 . . . . 5  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  T  =  ( z  e. 
{ x  e.  ~P D  |  x  ~~  2o }  |->  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z  \  {
y } ) ,  y ) ) ) )
109fneq1d 5662 . . . 4  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T  Fn  { x  e.  ~P D  |  x 
~~  2o }  <->  ( z  e.  { x  e.  ~P D  |  x  ~~  2o }  |->  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z  \  {
y } ) ,  y ) ) )  Fn  { x  e. 
~P D  |  x 
~~  2o } ) )
116, 10mpbird 232 . . 3  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  T  Fn  { x  e.  ~P D  |  x  ~~  2o } )
12 elpw2g 4603 . . . . . 6  |-  ( D  e.  V  ->  ( P  e.  ~P D  <->  P 
C_  D ) )
1312biimpar 485 . . . . 5  |-  ( ( D  e.  V  /\  P  C_  D )  ->  P  e.  ~P D
)
14133adant3 1011 . . . 4  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  P  e.  ~P D )
15 simp3 993 . . . 4  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  P  ~~  2o )
16 breq1 4443 . . . . 5  |-  ( x  =  P  ->  (
x  ~~  2o  <->  P  ~~  2o ) )
1716elrab 3254 . . . 4  |-  ( P  e.  { x  e. 
~P D  |  x 
~~  2o }  <->  ( P  e.  ~P D  /\  P  ~~  2o ) )
1814, 15, 17sylanbrc 664 . . 3  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  P  e.  { x  e.  ~P D  |  x  ~~  2o } )
19 fnfvelrn 6009 . . 3  |-  ( ( T  Fn  { x  e.  ~P D  |  x 
~~  2o }  /\  P  e.  { x  e.  ~P D  |  x 
~~  2o } )  ->  ( T `  P )  e.  ran  T )
2011, 18, 19syl2anc 661 . 2  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T `  P )  e.  ran  T )
21 pmtrrn.r . 2  |-  R  =  ran  T
2220, 21syl6eleqr 2559 1  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T `  P )  e.  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2807   {crab 2811   _Vcvv 3106    \ cdif 3466    C_ wss 3469   ifcif 3932   ~Pcpw 4003   {csn 4020   U.cuni 4238   class class class wbr 4440    |-> cmpt 4498   ran crn 4993    Fn wfn 5574   ` cfv 5579   2oc2o 7114    ~~ cen 7503  pmTrspcpmtr 16255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-pmtr 16256
This theorem is referenced by:  pmtrfb  16279  symggen  16284  pmtr3ncom  16289  pmtrdifellem1  16290  mdetralt  18870
  Copyright terms: Public domain W3C validator