MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrrn Structured version   Unicode version

Theorem pmtrrn 15956
Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
Assertion
Ref Expression
pmtrrn  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T `  P )  e.  R )

Proof of Theorem pmtrrn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptexg 5944 . . . . . . 7  |-  ( D  e.  V  ->  (
y  e.  D  |->  if ( y  e.  z ,  U. ( z 
\  { y } ) ,  y ) )  e.  _V )
21ralrimivw 2798 . . . . . 6  |-  ( D  e.  V  ->  A. z  e.  { x  e.  ~P D  |  x  ~~  2o }  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z  \  {
y } ) ,  y ) )  e. 
_V )
323ad2ant1 1004 . . . . 5  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  A. z  e.  { x  e.  ~P D  |  x  ~~  2o }  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z  \  {
y } ) ,  y ) )  e. 
_V )
4 eqid 2441 . . . . . 6  |-  ( z  e.  { x  e. 
~P D  |  x 
~~  2o }  |->  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z 
\  { y } ) ,  y ) ) )  =  ( z  e.  { x  e.  ~P D  |  x 
~~  2o }  |->  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z 
\  { y } ) ,  y ) ) )
54fnmpt 5534 . . . . 5  |-  ( A. z  e.  { x  e.  ~P D  |  x 
~~  2o }  (
y  e.  D  |->  if ( y  e.  z ,  U. ( z 
\  { y } ) ,  y ) )  e.  _V  ->  ( z  e.  { x  e.  ~P D  |  x 
~~  2o }  |->  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z 
\  { y } ) ,  y ) ) )  Fn  {
x  e.  ~P D  |  x  ~~  2o }
)
63, 5syl 16 . . . 4  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  (
z  e.  { x  e.  ~P D  |  x 
~~  2o }  |->  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z 
\  { y } ) ,  y ) ) )  Fn  {
x  e.  ~P D  |  x  ~~  2o }
)
7 pmtrrn.t . . . . . . 7  |-  T  =  (pmTrsp `  D )
87pmtrfval 15949 . . . . . 6  |-  ( D  e.  V  ->  T  =  ( z  e. 
{ x  e.  ~P D  |  x  ~~  2o }  |->  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z  \  {
y } ) ,  y ) ) ) )
983ad2ant1 1004 . . . . 5  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  T  =  ( z  e. 
{ x  e.  ~P D  |  x  ~~  2o }  |->  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z  \  {
y } ) ,  y ) ) ) )
109fneq1d 5498 . . . 4  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T  Fn  { x  e.  ~P D  |  x 
~~  2o }  <->  ( z  e.  { x  e.  ~P D  |  x  ~~  2o }  |->  ( y  e.  D  |->  if ( y  e.  z ,  U. ( z  \  {
y } ) ,  y ) ) )  Fn  { x  e. 
~P D  |  x 
~~  2o } ) )
116, 10mpbird 232 . . 3  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  T  Fn  { x  e.  ~P D  |  x  ~~  2o } )
12 elpw2g 4452 . . . . . 6  |-  ( D  e.  V  ->  ( P  e.  ~P D  <->  P 
C_  D ) )
1312biimpar 482 . . . . 5  |-  ( ( D  e.  V  /\  P  C_  D )  ->  P  e.  ~P D
)
14133adant3 1003 . . . 4  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  P  e.  ~P D )
15 simp3 985 . . . 4  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  P  ~~  2o )
16 breq1 4292 . . . . 5  |-  ( x  =  P  ->  (
x  ~~  2o  <->  P  ~~  2o ) )
1716elrab 3114 . . . 4  |-  ( P  e.  { x  e. 
~P D  |  x 
~~  2o }  <->  ( P  e.  ~P D  /\  P  ~~  2o ) )
1814, 15, 17sylanbrc 659 . . 3  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  P  e.  { x  e.  ~P D  |  x  ~~  2o } )
19 fnfvelrn 5837 . . 3  |-  ( ( T  Fn  { x  e.  ~P D  |  x 
~~  2o }  /\  P  e.  { x  e.  ~P D  |  x 
~~  2o } )  ->  ( T `  P )  e.  ran  T )
2011, 18, 19syl2anc 656 . 2  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T `  P )  e.  ran  T )
21 pmtrrn.r . 2  |-  R  =  ran  T
2220, 21syl6eleqr 2532 1  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T `  P )  e.  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 960    = wceq 1364    e. wcel 1761   A.wral 2713   {crab 2717   _Vcvv 2970    \ cdif 3322    C_ wss 3325   ifcif 3788   ~Pcpw 3857   {csn 3874   U.cuni 4088   class class class wbr 4289    e. cmpt 4347   ran crn 4837    Fn wfn 5410   ` cfv 5415   2oc2o 6910    ~~ cen 7303  pmTrspcpmtr 15940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-pmtr 15941
This theorem is referenced by:  pmtrfb  15964  symggen  15969  pmtr3ncom  15974  pmtrdifellem1  15975  mdetralt  18314
  Copyright terms: Public domain W3C validator