MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfvalrn Structured version   Visualization version   Unicode version

Theorem pmtrprfvalrn 17129
Description: The range of the transpositions on a pair is actually a singleton: the transposition of the two elements of the pair. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pmtrprfvalrn  |-  ran  (pmTrsp `  { 1 ,  2 } )  =  { { <. 1 ,  2
>. ,  <. 2 ,  1 >. } }

Proof of Theorem pmtrprfvalrn
Dummy variables  t  p  z  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrprfval 17128 . . 3  |-  (pmTrsp `  { 1 ,  2 } )  =  ( p  e.  { {
1 ,  2 } }  |->  ( z  e. 
{ 1 ,  2 }  |->  if ( z  =  1 ,  2 ,  1 ) ) )
21rneqi 5061 . 2  |-  ran  (pmTrsp `  { 1 ,  2 } )  =  ran  ( p  e.  { {
1 ,  2 } }  |->  ( z  e. 
{ 1 ,  2 }  |->  if ( z  =  1 ,  2 ,  1 ) ) )
3 eqid 2451 . . . 4  |-  ( p  e.  { { 1 ,  2 } }  |->  ( z  e.  {
1 ,  2 } 
|->  if ( z  =  1 ,  2 ,  1 ) ) )  =  ( p  e. 
{ { 1 ,  2 } }  |->  ( z  e.  { 1 ,  2 }  |->  if ( z  =  1 ,  2 ,  1 ) ) )
43rnmpt 5080 . . 3  |-  ran  (
p  e.  { {
1 ,  2 } }  |->  ( z  e. 
{ 1 ,  2 }  |->  if ( z  =  1 ,  2 ,  1 ) ) )  =  { t  |  E. p  e. 
{ { 1 ,  2 } } t  =  ( z  e. 
{ 1 ,  2 }  |->  if ( z  =  1 ,  2 ,  1 ) ) }
5 1ex 9638 . . . . . . . 8  |-  1  e.  _V
6 id 22 . . . . . . . . . 10  |-  ( 1  e.  _V  ->  1  e.  _V )
7 2nn 10767 . . . . . . . . . . 11  |-  2  e.  NN
87a1i 11 . . . . . . . . . 10  |-  ( 1  e.  _V  ->  2  e.  NN )
9 iftrue 3887 . . . . . . . . . . 11  |-  ( z  =  1  ->  if ( z  =  1 ,  2 ,  1 )  =  2 )
109adantl 468 . . . . . . . . . 10  |-  ( ( 1  e.  _V  /\  z  =  1 )  ->  if ( z  =  1 ,  2 ,  1 )  =  2 )
11 1ne2 10822 . . . . . . . . . . . . . 14  |-  1  =/=  2
1211nesymi 2681 . . . . . . . . . . . . 13  |-  -.  2  =  1
13 eqeq1 2455 . . . . . . . . . . . . 13  |-  ( z  =  2  ->  (
z  =  1  <->  2  =  1 ) )
1412, 13mtbiri 305 . . . . . . . . . . . 12  |-  ( z  =  2  ->  -.  z  =  1 )
1514iffalsed 3892 . . . . . . . . . . 11  |-  ( z  =  2  ->  if ( z  =  1 ,  2 ,  1 )  =  1 )
1615adantl 468 . . . . . . . . . 10  |-  ( ( 1  e.  _V  /\  z  =  2 )  ->  if ( z  =  1 ,  2 ,  1 )  =  1 )
176, 8, 8, 6, 10, 16fmptpr 6089 . . . . . . . . 9  |-  ( 1  e.  _V  ->  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  =  ( z  e.  { 1 ,  2 }  |->  if ( z  =  1 ,  2 ,  1 ) ) )
1817eqeq2d 2461 . . . . . . . 8  |-  ( 1  e.  _V  ->  (
t  =  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  <->  t  =  ( z  e.  { 1 ,  2 }  |->  if ( z  =  1 ,  2 ,  1 ) ) ) )
195, 18ax-mp 5 . . . . . . 7  |-  ( t  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  <-> 
t  =  ( z  e.  { 1 ,  2 }  |->  if ( z  =  1 ,  2 ,  1 ) ) )
2019bicomi 206 . . . . . 6  |-  ( t  =  ( z  e. 
{ 1 ,  2 }  |->  if ( z  =  1 ,  2 ,  1 ) )  <-> 
t  =  { <. 1 ,  2 >. , 
<. 2 ,  1
>. } )
2120rexbii 2889 . . . . 5  |-  ( E. p  e.  { {
1 ,  2 } } t  =  ( z  e.  { 1 ,  2 }  |->  if ( z  =  1 ,  2 ,  1 ) )  <->  E. p  e.  { { 1 ,  2 } } t  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. } )
2221abbii 2567 . . . 4  |-  { t  |  E. p  e. 
{ { 1 ,  2 } } t  =  ( z  e. 
{ 1 ,  2 }  |->  if ( z  =  1 ,  2 ,  1 ) ) }  =  { t  |  E. p  e. 
{ { 1 ,  2 } } t  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. } }
23 prex 4642 . . . . . . . 8  |-  { 1 ,  2 }  e.  _V
2423snnz 4090 . . . . . . 7  |-  { {
1 ,  2 } }  =/=  (/)
25 r19.9rzv 3863 . . . . . . . 8  |-  ( { { 1 ,  2 } }  =/=  (/)  ->  (
s  =  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  <->  E. p  e.  { { 1 ,  2 } } s  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. } ) )
2625bicomd 205 . . . . . . 7  |-  ( { { 1 ,  2 } }  =/=  (/)  ->  ( E. p  e.  { {
1 ,  2 } } s  =  { <. 1 ,  2 >. ,  <. 2 ,  1
>. }  <->  s  =  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } ) )
2724, 26ax-mp 5 . . . . . 6  |-  ( E. p  e.  { {
1 ,  2 } } s  =  { <. 1 ,  2 >. ,  <. 2 ,  1
>. }  <->  s  =  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } )
28 vex 3048 . . . . . . 7  |-  s  e. 
_V
29 eqeq1 2455 . . . . . . . 8  |-  ( t  =  s  ->  (
t  =  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  <->  s  =  { <. 1 ,  2 >. ,  <. 2 ,  1
>. } ) )
3029rexbidv 2901 . . . . . . 7  |-  ( t  =  s  ->  ( E. p  e.  { {
1 ,  2 } } t  =  { <. 1 ,  2 >. ,  <. 2 ,  1
>. }  <->  E. p  e.  { { 1 ,  2 } } s  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. } ) )
3128, 30elab 3185 . . . . . 6  |-  ( s  e.  { t  |  E. p  e.  { { 1 ,  2 } } t  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. } }  <->  E. p  e.  { { 1 ,  2 } } s  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. } )
32 elsn 3982 . . . . . 6  |-  ( s  e.  { { <. 1 ,  2 >. , 
<. 2 ,  1
>. } }  <->  s  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. } )
3327, 31, 323bitr4i 281 . . . . 5  |-  ( s  e.  { t  |  E. p  e.  { { 1 ,  2 } } t  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. } }  <->  s  e.  { { <. 1 ,  2
>. ,  <. 2 ,  1 >. } } )
3433eqriv 2448 . . . 4  |-  { t  |  E. p  e. 
{ { 1 ,  2 } } t  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. } }  =  { { <. 1 ,  2 >. ,  <. 2 ,  1
>. } }
3522, 34eqtri 2473 . . 3  |-  { t  |  E. p  e. 
{ { 1 ,  2 } } t  =  ( z  e. 
{ 1 ,  2 }  |->  if ( z  =  1 ,  2 ,  1 ) ) }  =  { { <. 1 ,  2 >. ,  <. 2 ,  1
>. } }
364, 35eqtri 2473 . 2  |-  ran  (
p  e.  { {
1 ,  2 } }  |->  ( z  e. 
{ 1 ,  2 }  |->  if ( z  =  1 ,  2 ,  1 ) ) )  =  { { <. 1 ,  2 >. ,  <. 2 ,  1
>. } }
372, 36eqtri 2473 1  |-  ran  (pmTrsp `  { 1 ,  2 } )  =  { { <. 1 ,  2
>. ,  <. 2 ,  1 >. } }
Colors of variables: wff setvar class
Syntax hints:    <-> wb 188    = wceq 1444    e. wcel 1887   {cab 2437    =/= wne 2622   E.wrex 2738   _Vcvv 3045   (/)c0 3731   ifcif 3881   {csn 3968   {cpr 3970   <.cop 3974    |-> cmpt 4461   ran crn 4835   ` cfv 5582   1c1 9540   NNcn 10609   2c2 10659  pmTrspcpmtr 17082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-hash 12516  df-pmtr 17083
This theorem is referenced by:  psgnprfval2  17164
  Copyright terms: Public domain W3C validator