MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfinv Structured version   Unicode version

Theorem pmtrfinv 16812
Description: A transposition function is an involution. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
Assertion
Ref Expression
pmtrfinv  |-  ( F  e.  R  ->  ( F  o.  F )  =  (  _I  |`  D ) )

Proof of Theorem pmtrfinv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pmtrrn.t . . . . . . 7  |-  T  =  (pmTrsp `  D )
2 pmtrrn.r . . . . . . 7  |-  R  =  ran  T
3 eqid 2404 . . . . . . 7  |-  dom  ( F  \  _I  )  =  dom  ( F  \  _I  )
41, 2, 3pmtrfrn 16809 . . . . . 6  |-  ( F  e.  R  ->  (
( D  e.  _V  /\ 
dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  /\  F  =  ( T `  dom  ( F  \  _I  ) ) ) )
54simpld 459 . . . . 5  |-  ( F  e.  R  ->  ( D  e.  _V  /\  dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o ) )
61pmtrf 16806 . . . . 5  |-  ( ( D  e.  _V  /\  dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  ->  ( T `  dom  ( F 
\  _I  ) ) : D --> D )
75, 6syl 17 . . . 4  |-  ( F  e.  R  ->  ( T `  dom  ( F 
\  _I  ) ) : D --> D )
84simprd 463 . . . . 5  |-  ( F  e.  R  ->  F  =  ( T `  dom  ( F  \  _I  ) ) )
98feq1d 5702 . . . 4  |-  ( F  e.  R  ->  ( F : D --> D  <->  ( T `  dom  ( F  \  _I  ) ) : D --> D ) )
107, 9mpbird 234 . . 3  |-  ( F  e.  R  ->  F : D --> D )
11 fco 5726 . . . 4  |-  ( ( F : D --> D  /\  F : D --> D )  ->  ( F  o.  F ) : D --> D )
1211anidms 645 . . 3  |-  ( F : D --> D  -> 
( F  o.  F
) : D --> D )
13 ffn 5716 . . 3  |-  ( ( F  o.  F ) : D --> D  -> 
( F  o.  F
)  Fn  D )
1410, 12, 133syl 18 . 2  |-  ( F  e.  R  ->  ( F  o.  F )  Fn  D )
15 fnresi 5681 . . 3  |-  (  _I  |`  D )  Fn  D
1615a1i 11 . 2  |-  ( F  e.  R  ->  (  _I  |`  D )  Fn  D )
171, 2, 3pmtrffv 16810 . . . . . . 7  |-  ( ( F  e.  R  /\  x  e.  D )  ->  ( F `  x
)  =  if ( x  e.  dom  ( F  \  _I  ) , 
U. ( dom  ( F  \  _I  )  \  { x } ) ,  x ) )
18 iftrue 3893 . . . . . . 7  |-  ( x  e.  dom  ( F 
\  _I  )  ->  if ( x  e.  dom  ( F  \  _I  ) ,  U. ( dom  ( F  \  _I  )  \  { x } ) ,  x )  = 
U. ( dom  ( F  \  _I  )  \  { x } ) )
1917, 18sylan9eq 2465 . . . . . 6  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  ( F `  x )  =  U. ( dom  ( F  \  _I  )  \  { x } ) )
2019fveq2d 5855 . . . . 5  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  ( F `  ( F `  x ) )  =  ( F `  U. ( dom  ( F  \  _I  )  \  { x } ) ) )
21 simpll 754 . . . . . . 7  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  F  e.  R )
225simp2d 1012 . . . . . . . . 9  |-  ( F  e.  R  ->  dom  ( F  \  _I  )  C_  D )
2322ad2antrr 726 . . . . . . . 8  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  dom  ( F  \  _I  )  C_  D )
24 1onn 7327 . . . . . . . . . . . 12  |-  1o  e.  om
2524a1i 11 . . . . . . . . . . 11  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  1o  e.  om )
265simp3d 1013 . . . . . . . . . . . . 13  |-  ( F  e.  R  ->  dom  ( F  \  _I  )  ~~  2o )
27 df-2o 7170 . . . . . . . . . . . . 13  |-  2o  =  suc  1o
2826, 27syl6breq 4436 . . . . . . . . . . . 12  |-  ( F  e.  R  ->  dom  ( F  \  _I  )  ~~  suc  1o )
2928ad2antrr 726 . . . . . . . . . . 11  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  dom  ( F  \  _I  )  ~~  suc  1o )
30 simpr 461 . . . . . . . . . . 11  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  x  e.  dom  ( F  \  _I  ) )
31 dif1en 7789 . . . . . . . . . . 11  |-  ( ( 1o  e.  om  /\  dom  ( F  \  _I  )  ~~  suc  1o  /\  x  e.  dom  ( F 
\  _I  ) )  ->  ( dom  ( F  \  _I  )  \  { x } ) 
~~  1o )
3225, 29, 30, 31syl3anc 1232 . . . . . . . . . 10  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  ( dom  ( F  \  _I  )  \  { x }
)  ~~  1o )
33 en1uniel 7627 . . . . . . . . . 10  |-  ( ( dom  ( F  \  _I  )  \  { x } )  ~~  1o  ->  U. ( dom  ( F  \  _I  )  \  { x } )  e.  ( dom  ( F  \  _I  )  \  { x } ) )
3432, 33syl 17 . . . . . . . . 9  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  U. ( dom  ( F  \  _I  )  \  { x }
)  e.  ( dom  ( F  \  _I  )  \  { x }
) )
3534eldifad 3428 . . . . . . . 8  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  U. ( dom  ( F  \  _I  )  \  { x }
)  e.  dom  ( F  \  _I  ) )
3623, 35sseldd 3445 . . . . . . 7  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  U. ( dom  ( F  \  _I  )  \  { x }
)  e.  D )
371, 2, 3pmtrffv 16810 . . . . . . 7  |-  ( ( F  e.  R  /\  U. ( dom  ( F 
\  _I  )  \  { x } )  e.  D )  -> 
( F `  U. ( dom  ( F  \  _I  )  \  { x } ) )  =  if ( U. ( dom  ( F  \  _I  )  \  { x }
)  e.  dom  ( F  \  _I  ) , 
U. ( dom  ( F  \  _I  )  \  { U. ( dom  ( F  \  _I  )  \  { x } ) } ) ,  U. ( dom  ( F  \  _I  )  \  { x } ) ) )
3821, 36, 37syl2anc 661 . . . . . 6  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  ( F `  U. ( dom  ( F  \  _I  )  \  { x }
) )  =  if ( U. ( dom  ( F  \  _I  )  \  { x }
)  e.  dom  ( F  \  _I  ) , 
U. ( dom  ( F  \  _I  )  \  { U. ( dom  ( F  \  _I  )  \  { x } ) } ) ,  U. ( dom  ( F  \  _I  )  \  { x } ) ) )
39 iftrue 3893 . . . . . . . 8  |-  ( U. ( dom  ( F  \  _I  )  \  { x } )  e.  dom  ( F  \  _I  )  ->  if ( U. ( dom  ( F  \  _I  )  \  { x }
)  e.  dom  ( F  \  _I  ) , 
U. ( dom  ( F  \  _I  )  \  { U. ( dom  ( F  \  _I  )  \  { x } ) } ) ,  U. ( dom  ( F  \  _I  )  \  { x } ) )  = 
U. ( dom  ( F  \  _I  )  \  { U. ( dom  ( F  \  _I  )  \  { x } ) } ) )
4035, 39syl 17 . . . . . . 7  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  if ( U. ( dom  ( F  \  _I  )  \  { x } )  e.  dom  ( F 
\  _I  ) , 
U. ( dom  ( F  \  _I  )  \  { U. ( dom  ( F  \  _I  )  \  { x } ) } ) ,  U. ( dom  ( F  \  _I  )  \  { x } ) )  = 
U. ( dom  ( F  \  _I  )  \  { U. ( dom  ( F  \  _I  )  \  { x } ) } ) )
4126adantr 465 . . . . . . . 8  |-  ( ( F  e.  R  /\  x  e.  D )  ->  dom  ( F  \  _I  )  ~~  2o )
42 en2other2 8421 . . . . . . . . 9  |-  ( ( x  e.  dom  ( F  \  _I  )  /\  dom  ( F  \  _I  )  ~~  2o )  ->  U. ( dom  ( F 
\  _I  )  \  { U. ( dom  ( F  \  _I  )  \  { x } ) } )  =  x )
4342ancoms 453 . . . . . . . 8  |-  ( ( dom  ( F  \  _I  )  ~~  2o  /\  x  e.  dom  ( F 
\  _I  ) )  ->  U. ( dom  ( F  \  _I  )  \  { U. ( dom  ( F  \  _I  )  \  { x } ) } )  =  x )
4441, 43sylan 471 . . . . . . 7  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  U. ( dom  ( F  \  _I  )  \  { U. ( dom  ( F  \  _I  )  \  { x }
) } )  =  x )
4540, 44eqtrd 2445 . . . . . 6  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  if ( U. ( dom  ( F  \  _I  )  \  { x } )  e.  dom  ( F 
\  _I  ) , 
U. ( dom  ( F  \  _I  )  \  { U. ( dom  ( F  \  _I  )  \  { x } ) } ) ,  U. ( dom  ( F  \  _I  )  \  { x } ) )  =  x )
4638, 45eqtrd 2445 . . . . 5  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  ( F `  U. ( dom  ( F  \  _I  )  \  { x }
) )  =  x )
4720, 46eqtrd 2445 . . . 4  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  x  e.  dom  ( F  \  _I  ) )  ->  ( F `  ( F `  x ) )  =  x )
48 ffn 5716 . . . . . . . . 9  |-  ( F : D --> D  ->  F  Fn  D )
4910, 48syl 17 . . . . . . . 8  |-  ( F  e.  R  ->  F  Fn  D )
50 fnelnfp 6083 . . . . . . . 8  |-  ( ( F  Fn  D  /\  x  e.  D )  ->  ( x  e.  dom  ( F  \  _I  )  <->  ( F `  x )  =/=  x ) )
5149, 50sylan 471 . . . . . . 7  |-  ( ( F  e.  R  /\  x  e.  D )  ->  ( x  e.  dom  ( F  \  _I  )  <->  ( F `  x )  =/=  x ) )
5251necon2bbid 2661 . . . . . 6  |-  ( ( F  e.  R  /\  x  e.  D )  ->  ( ( F `  x )  =  x  <->  -.  x  e.  dom  ( F  \  _I  )
) )
5352biimpar 485 . . . . 5  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  -.  x  e.  dom  ( F  \  _I  ) )  ->  ( F `  x )  =  x )
54 fveq2 5851 . . . . . 6  |-  ( ( F `  x )  =  x  ->  ( F `  ( F `  x ) )  =  ( F `  x
) )
55 id 23 . . . . . 6  |-  ( ( F `  x )  =  x  ->  ( F `  x )  =  x )
5654, 55eqtrd 2445 . . . . 5  |-  ( ( F `  x )  =  x  ->  ( F `  ( F `  x ) )  =  x )
5753, 56syl 17 . . . 4  |-  ( ( ( F  e.  R  /\  x  e.  D
)  /\  -.  x  e.  dom  ( F  \  _I  ) )  ->  ( F `  ( F `  x ) )  =  x )
5847, 57pm2.61dan 794 . . 3  |-  ( ( F  e.  R  /\  x  e.  D )  ->  ( F `  ( F `  x )
)  =  x )
59 fvco2 5926 . . . 4  |-  ( ( F  Fn  D  /\  x  e.  D )  ->  ( ( F  o.  F ) `  x
)  =  ( F `
 ( F `  x ) ) )
6049, 59sylan 471 . . 3  |-  ( ( F  e.  R  /\  x  e.  D )  ->  ( ( F  o.  F ) `  x
)  =  ( F `
 ( F `  x ) ) )
61 fvresi 6079 . . . 4  |-  ( x  e.  D  ->  (
(  _I  |`  D ) `
 x )  =  x )
6261adantl 466 . . 3  |-  ( ( F  e.  R  /\  x  e.  D )  ->  ( (  _I  |`  D ) `
 x )  =  x )
6358, 60, 623eqtr4d 2455 . 2  |-  ( ( F  e.  R  /\  x  e.  D )  ->  ( ( F  o.  F ) `  x
)  =  ( (  _I  |`  D ) `  x ) )
6414, 16, 63eqfnfvd 5964 1  |-  ( F  e.  R  ->  ( F  o.  F )  =  (  _I  |`  D ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 186    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844    =/= wne 2600   _Vcvv 3061    \ cdif 3413    C_ wss 3416   ifcif 3887   {csn 3974   U.cuni 4193   class class class wbr 4397    _I cid 4735   dom cdm 4825   ran crn 4826    |` cres 4827    o. ccom 4829   suc csuc 5414    Fn wfn 5566   -->wf 5567   ` cfv 5571   omcom 6685   1oc1o 7162   2oc2o 7163    ~~ cen 7553  pmTrspcpmtr 16792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-om 6686  df-1o 7169  df-2o 7170  df-er 7350  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-pmtr 16793
This theorem is referenced by:  pmtrff1o  16814  pmtrfcnv  16815  symggen  16821  psgnunilem1  16844
  Copyright terms: Public domain W3C validator