MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrff1o Structured version   Unicode version

Theorem pmtrff1o 16361
Description: A transposition function is a permutation. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
Assertion
Ref Expression
pmtrff1o  |-  ( F  e.  R  ->  F : D -1-1-onto-> D )

Proof of Theorem pmtrff1o
StepHypRef Expression
1 pmtrrn.t . . . . . . 7  |-  T  =  (pmTrsp `  D )
2 pmtrrn.r . . . . . . 7  |-  R  =  ran  T
3 eqid 2467 . . . . . . 7  |-  dom  ( F  \  _I  )  =  dom  ( F  \  _I  )
41, 2, 3pmtrfrn 16356 . . . . . 6  |-  ( F  e.  R  ->  (
( D  e.  _V  /\ 
dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  /\  F  =  ( T `  dom  ( F  \  _I  ) ) ) )
54simpld 459 . . . . 5  |-  ( F  e.  R  ->  ( D  e.  _V  /\  dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o ) )
61pmtrf 16353 . . . . 5  |-  ( ( D  e.  _V  /\  dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  ->  ( T `  dom  ( F 
\  _I  ) ) : D --> D )
75, 6syl 16 . . . 4  |-  ( F  e.  R  ->  ( T `  dom  ( F 
\  _I  ) ) : D --> D )
84simprd 463 . . . . 5  |-  ( F  e.  R  ->  F  =  ( T `  dom  ( F  \  _I  ) ) )
98feq1d 5723 . . . 4  |-  ( F  e.  R  ->  ( F : D --> D  <->  ( T `  dom  ( F  \  _I  ) ) : D --> D ) )
107, 9mpbird 232 . . 3  |-  ( F  e.  R  ->  F : D --> D )
111, 2pmtrfinv 16359 . . 3  |-  ( F  e.  R  ->  ( F  o.  F )  =  (  _I  |`  D ) )
12 fcof1o 6198 . . 3  |-  ( ( ( F : D --> D  /\  F : D --> D )  /\  (
( F  o.  F
)  =  (  _I  |`  D )  /\  ( F  o.  F )  =  (  _I  |`  D ) ) )  ->  ( F : D -1-1-onto-> D  /\  `' F  =  F ) )
1310, 10, 11, 11, 12syl22anc 1229 . 2  |-  ( F  e.  R  ->  ( F : D -1-1-onto-> D  /\  `' F  =  F ) )
1413simpld 459 1  |-  ( F  e.  R  ->  F : D -1-1-onto-> D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   _Vcvv 3118    \ cdif 3478    C_ wss 3481   class class class wbr 4453    _I cid 4796   `'ccnv 5004   dom cdm 5005   ran crn 5006    |` cres 5007    o. ccom 5009   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594   2oc2o 7136    ~~ cen 7525  pmTrspcpmtr 16339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-om 6696  df-1o 7142  df-2o 7143  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-pmtr 16340
This theorem is referenced by:  pmtrfb  16363  pmtrfconj  16364  symgtrf  16367  psgnunilem1  16391
  Copyright terms: Public domain W3C validator