MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfconj Structured version   Unicode version

Theorem pmtrfconj 16815
Description: Any conjugate of a transposition is a transposition. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
Assertion
Ref Expression
pmtrfconj  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  (
( G  o.  F
)  o.  `' G
)  e.  R )

Proof of Theorem pmtrfconj
StepHypRef Expression
1 pmtrrn.t . . . . 5  |-  T  =  (pmTrsp `  D )
2 pmtrrn.r . . . . 5  |-  R  =  ran  T
31, 2pmtrfb 16814 . . . 4  |-  ( F  e.  R  <->  ( D  e.  _V  /\  F : D
-1-1-onto-> D  /\  dom  ( F 
\  _I  )  ~~  2o ) )
43simp1bi 1012 . . 3  |-  ( F  e.  R  ->  D  e.  _V )
54adantr 463 . 2  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  D  e.  _V )
6 simpr 459 . . . 4  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  G : D -1-1-onto-> D )
71, 2pmtrff1o 16812 . . . . 5  |-  ( F  e.  R  ->  F : D -1-1-onto-> D )
87adantr 463 . . . 4  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  F : D -1-1-onto-> D )
9 f1oco 5821 . . . 4  |-  ( ( G : D -1-1-onto-> D  /\  F : D -1-1-onto-> D )  ->  ( G  o.  F ) : D -1-1-onto-> D )
106, 8, 9syl2anc 659 . . 3  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  ( G  o.  F ) : D -1-1-onto-> D )
11 f1ocnv 5811 . . . 4  |-  ( G : D -1-1-onto-> D  ->  `' G : D -1-1-onto-> D )
1211adantl 464 . . 3  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  `' G : D -1-1-onto-> D )
13 f1oco 5821 . . 3  |-  ( ( ( G  o.  F
) : D -1-1-onto-> D  /\  `' G : D -1-1-onto-> D )  ->  ( ( G  o.  F )  o.  `' G ) : D -1-1-onto-> D
)
1410, 12, 13syl2anc 659 . 2  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  (
( G  o.  F
)  o.  `' G
) : D -1-1-onto-> D )
15 f1of 5799 . . . . . . 7  |-  ( F : D -1-1-onto-> D  ->  F : D
--> D )
167, 15syl 17 . . . . . 6  |-  ( F  e.  R  ->  F : D --> D )
1716adantr 463 . . . . 5  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  F : D --> D )
18 f1omvdconj 16795 . . . . 5  |-  ( ( F : D --> D  /\  G : D -1-1-onto-> D )  ->  dom  ( ( ( G  o.  F )  o.  `' G )  \  _I  )  =  ( G " dom  ( F  \  _I  ) ) )
1917, 6, 18syl2anc 659 . . . 4  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  dom  ( ( ( G  o.  F )  o.  `' G )  \  _I  )  =  ( G " dom  ( F  \  _I  ) ) )
20 f1of1 5798 . . . . . 6  |-  ( G : D -1-1-onto-> D  ->  G : D -1-1-> D )
2120adantl 464 . . . . 5  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  G : D -1-1-> D )
22 difss 3570 . . . . . . . 8  |-  ( F 
\  _I  )  C_  F
23 dmss 5023 . . . . . . . 8  |-  ( ( F  \  _I  )  C_  F  ->  dom  ( F 
\  _I  )  C_  dom  F )
2422, 23ax-mp 5 . . . . . . 7  |-  dom  ( F  \  _I  )  C_  dom  F
25 fdm 5718 . . . . . . 7  |-  ( F : D --> D  ->  dom  F  =  D )
2624, 25syl5sseq 3490 . . . . . 6  |-  ( F : D --> D  ->  dom  ( F  \  _I  )  C_  D )
2717, 26syl 17 . . . . 5  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  dom  ( F  \  _I  )  C_  D )
285, 27ssexd 4541 . . . . 5  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  dom  ( F  \  _I  )  e.  _V )
29 f1imaeng 7613 . . . . 5  |-  ( ( G : D -1-1-> D  /\  dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  e.  _V )  ->  ( G " dom  ( F  \  _I  )
)  ~~  dom  ( F 
\  _I  ) )
3021, 27, 28, 29syl3anc 1230 . . . 4  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  ( G " dom  ( F 
\  _I  ) ) 
~~  dom  ( F  \  _I  ) )
3119, 30eqbrtrd 4415 . . 3  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  dom  ( ( ( G  o.  F )  o.  `' G )  \  _I  )  ~~  dom  ( F 
\  _I  ) )
323simp3bi 1014 . . . 4  |-  ( F  e.  R  ->  dom  ( F  \  _I  )  ~~  2o )
3332adantr 463 . . 3  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  dom  ( F  \  _I  )  ~~  2o )
34 entr 7605 . . 3  |-  ( ( dom  ( ( ( G  o.  F )  o.  `' G ) 
\  _I  )  ~~  dom  ( F  \  _I  )  /\  dom  ( F 
\  _I  )  ~~  2o )  ->  dom  (
( ( G  o.  F )  o.  `' G )  \  _I  )  ~~  2o )
3531, 33, 34syl2anc 659 . 2  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  dom  ( ( ( G  o.  F )  o.  `' G )  \  _I  )  ~~  2o )
361, 2pmtrfb 16814 . 2  |-  ( ( ( G  o.  F
)  o.  `' G
)  e.  R  <->  ( D  e.  _V  /\  ( ( G  o.  F )  o.  `' G ) : D -1-1-onto-> D  /\  dom  (
( ( G  o.  F )  o.  `' G )  \  _I  )  ~~  2o ) )
375, 14, 35, 36syl3anbrc 1181 1  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  (
( G  o.  F
)  o.  `' G
)  e.  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   _Vcvv 3059    \ cdif 3411    C_ wss 3414   class class class wbr 4395    _I cid 4733   `'ccnv 4822   dom cdm 4823   ran crn 4824   "cima 4826    o. ccom 4827   -->wf 5565   -1-1->wf1 5566   -1-1-onto->wf1o 5568   ` cfv 5569   2oc2o 7161    ~~ cen 7551  pmTrspcpmtr 16790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-om 6684  df-1o 7167  df-2o 7168  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-pmtr 16791
This theorem is referenced by:  psgnunilem1  16842
  Copyright terms: Public domain W3C validator