MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfcnv Structured version   Unicode version

Theorem pmtrfcnv 15968
Description: A transposition function is its own inverse. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
Assertion
Ref Expression
pmtrfcnv  |-  ( F  e.  R  ->  `' F  =  F )

Proof of Theorem pmtrfcnv
StepHypRef Expression
1 pmtrrn.t . . . . . . 7  |-  T  =  (pmTrsp `  D )
2 pmtrrn.r . . . . . . 7  |-  R  =  ran  T
3 eqid 2441 . . . . . . 7  |-  dom  ( F  \  _I  )  =  dom  ( F  \  _I  )
41, 2, 3pmtrfrn 15962 . . . . . 6  |-  ( F  e.  R  ->  (
( D  e.  _V  /\ 
dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  /\  F  =  ( T `  dom  ( F  \  _I  ) ) ) )
54simpld 459 . . . . 5  |-  ( F  e.  R  ->  ( D  e.  _V  /\  dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o ) )
61pmtrf 15959 . . . . 5  |-  ( ( D  e.  _V  /\  dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  ->  ( T `  dom  ( F 
\  _I  ) ) : D --> D )
75, 6syl 16 . . . 4  |-  ( F  e.  R  ->  ( T `  dom  ( F 
\  _I  ) ) : D --> D )
84simprd 463 . . . . 5  |-  ( F  e.  R  ->  F  =  ( T `  dom  ( F  \  _I  ) ) )
98feq1d 5544 . . . 4  |-  ( F  e.  R  ->  ( F : D --> D  <->  ( T `  dom  ( F  \  _I  ) ) : D --> D ) )
107, 9mpbird 232 . . 3  |-  ( F  e.  R  ->  F : D --> D )
111, 2pmtrfinv 15965 . . 3  |-  ( F  e.  R  ->  ( F  o.  F )  =  (  _I  |`  D ) )
12 fcof1o 5995 . . 3  |-  ( ( ( F : D --> D  /\  F : D --> D )  /\  (
( F  o.  F
)  =  (  _I  |`  D )  /\  ( F  o.  F )  =  (  _I  |`  D ) ) )  ->  ( F : D -1-1-onto-> D  /\  `' F  =  F ) )
1310, 10, 11, 11, 12syl22anc 1219 . 2  |-  ( F  e.  R  ->  ( F : D -1-1-onto-> D  /\  `' F  =  F ) )
1413simprd 463 1  |-  ( F  e.  R  ->  `' F  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   _Vcvv 2970    \ cdif 3323    C_ wss 3326   class class class wbr 4290    _I cid 4629   `'ccnv 4837   dom cdm 4838   ran crn 4839    |` cres 4840    o. ccom 4842   -->wf 5412   -1-1-onto->wf1o 5415   ` cfv 5416   2oc2o 6912    ~~ cen 7305  pmTrspcpmtr 15945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-om 6475  df-1o 6918  df-2o 6919  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-pmtr 15946
This theorem is referenced by:  symgtrinv  15976  psgnunilem1  15997
  Copyright terms: Public domain W3C validator