MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfb Structured version   Unicode version

Theorem pmtrfb 15964
Description: An intrinsic characterization of the transposition permutations. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
Assertion
Ref Expression
pmtrfb  |-  ( F  e.  R  <->  ( D  e.  _V  /\  F : D
-1-1-onto-> D  /\  dom  ( F 
\  _I  )  ~~  2o ) )

Proof of Theorem pmtrfb
StepHypRef Expression
1 pmtrrn.t . . . . 5  |-  T  =  (pmTrsp `  D )
2 pmtrrn.r . . . . 5  |-  R  =  ran  T
3 eqid 2441 . . . . 5  |-  dom  ( F  \  _I  )  =  dom  ( F  \  _I  )
41, 2, 3pmtrfrn 15957 . . . 4  |-  ( F  e.  R  ->  (
( D  e.  _V  /\ 
dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  /\  F  =  ( T `  dom  ( F  \  _I  ) ) ) )
5 simpl1 986 . . . 4  |-  ( ( ( D  e.  _V  /\ 
dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  /\  F  =  ( T `  dom  ( F  \  _I  ) ) )  ->  D  e.  _V )
64, 5syl 16 . . 3  |-  ( F  e.  R  ->  D  e.  _V )
71, 2pmtrff1o 15962 . . 3  |-  ( F  e.  R  ->  F : D -1-1-onto-> D )
8 simpl3 988 . . . 4  |-  ( ( ( D  e.  _V  /\ 
dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  /\  F  =  ( T `  dom  ( F  \  _I  ) ) )  ->  dom  ( F  \  _I  )  ~~  2o )
94, 8syl 16 . . 3  |-  ( F  e.  R  ->  dom  ( F  \  _I  )  ~~  2o )
106, 7, 93jca 1163 . 2  |-  ( F  e.  R  ->  ( D  e.  _V  /\  F : D -1-1-onto-> D  /\  dom  ( F  \  _I  )  ~~  2o ) )
11 simp2 984 . . . 4  |-  ( ( D  e.  _V  /\  F : D -1-1-onto-> D  /\  dom  ( F  \  _I  )  ~~  2o )  ->  F : D
-1-1-onto-> D )
12 difss 3480 . . . . . . . 8  |-  ( F 
\  _I  )  C_  F
13 dmss 5035 . . . . . . . 8  |-  ( ( F  \  _I  )  C_  F  ->  dom  ( F 
\  _I  )  C_  dom  F )
1412, 13ax-mp 5 . . . . . . 7  |-  dom  ( F  \  _I  )  C_  dom  F
15 f1odm 5642 . . . . . . 7  |-  ( F : D -1-1-onto-> D  ->  dom  F  =  D )
1614, 15syl5sseq 3401 . . . . . 6  |-  ( F : D -1-1-onto-> D  ->  dom  ( F 
\  _I  )  C_  D )
171, 2pmtrrn 15956 . . . . . 6  |-  ( ( D  e.  _V  /\  dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  ->  ( T `  dom  ( F 
\  _I  ) )  e.  R )
1816, 17syl3an2 1247 . . . . 5  |-  ( ( D  e.  _V  /\  F : D -1-1-onto-> D  /\  dom  ( F  \  _I  )  ~~  2o )  ->  ( T `
 dom  ( F  \  _I  ) )  e.  R )
191, 2pmtrff1o 15962 . . . . 5  |-  ( ( T `  dom  ( F  \  _I  ) )  e.  R  ->  ( T `  dom  ( F 
\  _I  ) ) : D -1-1-onto-> D )
2018, 19syl 16 . . . 4  |-  ( ( D  e.  _V  /\  F : D -1-1-onto-> D  /\  dom  ( F  \  _I  )  ~~  2o )  ->  ( T `
 dom  ( F  \  _I  ) ) : D -1-1-onto-> D )
21 simp3 985 . . . 4  |-  ( ( D  e.  _V  /\  F : D -1-1-onto-> D  /\  dom  ( F  \  _I  )  ~~  2o )  ->  dom  ( F  \  _I  )  ~~  2o )
221pmtrmvd 15955 . . . . 5  |-  ( ( D  e.  _V  /\  dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  ->  dom  ( ( T `  dom  ( F  \  _I  ) )  \  _I  )  =  dom  ( F 
\  _I  ) )
2316, 22syl3an2 1247 . . . 4  |-  ( ( D  e.  _V  /\  F : D -1-1-onto-> D  /\  dom  ( F  \  _I  )  ~~  2o )  ->  dom  (
( T `  dom  ( F  \  _I  )
)  \  _I  )  =  dom  ( F  \  _I  ) )
24 f1otrspeq 15946 . . . 4  |-  ( ( ( F : D -1-1-onto-> D  /\  ( T `  dom  ( F  \  _I  )
) : D -1-1-onto-> D )  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( ( T `  dom  ( F  \  _I  ) ) 
\  _I  )  =  dom  ( F  \  _I  ) ) )  ->  F  =  ( T `  dom  ( F  \  _I  ) ) )
2511, 20, 21, 23, 24syl22anc 1214 . . 3  |-  ( ( D  e.  _V  /\  F : D -1-1-onto-> D  /\  dom  ( F  \  _I  )  ~~  2o )  ->  F  =  ( T `  dom  ( F  \  _I  )
) )
2625, 18eqeltrd 2515 . 2  |-  ( ( D  e.  _V  /\  F : D -1-1-onto-> D  /\  dom  ( F  \  _I  )  ~~  2o )  ->  F  e.  R )
2710, 26impbii 188 1  |-  ( F  e.  R  <->  ( D  e.  _V  /\  F : D
-1-1-onto-> D  /\  dom  ( F 
\  _I  )  ~~  2o ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   _Vcvv 2970    \ cdif 3322    C_ wss 3325   class class class wbr 4289    _I cid 4627   dom cdm 4836   ran crn 4837   -1-1-onto->wf1o 5414   ` cfv 5415   2oc2o 6910    ~~ cen 7303  pmTrspcpmtr 15940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-om 6476  df-1o 6916  df-2o 6917  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-pmtr 15941
This theorem is referenced by:  pmtrfconj  15965  symggen  15969  pmtrdifellem1  15975  pmtrdifellem2  15976  psgnunilem1  15992
  Copyright terms: Public domain W3C validator