Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodlem1 Structured version   Unicode version

Theorem pmodlem1 33380
Description: Lemma for pmod1i 33382. (Contributed by NM, 9-Mar-2012.)
Hypotheses
Ref Expression
pmodlem.l  |-  .<_  =  ( le `  K )
pmodlem.j  |-  .\/  =  ( join `  K )
pmodlem.a  |-  A  =  ( Atoms `  K )
pmodlem.s  |-  S  =  ( PSubSp `  K )
pmodlem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
pmodlem1  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q 
.\/  r ) ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) )
Distinct variable groups:    q, p, r, A    .\/ , q, r    K, p, q, r    .<_ , q, r    .+ , p, q, r    S, p, q, r    X, p, q, r    Y, p, q, r    Z, p, q, r
Allowed substitution hints:    .\/ ( p)    .<_ ( p)

Proof of Theorem pmodlem1
StepHypRef Expression
1 simpl11 1080 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  K  e.  HL )
2 simpl12 1081 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  X  C_  A )
3 simpl13 1082 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  Y  C_  A )
4 ssinss1 3690 . . . . 5  |-  ( Y 
C_  A  ->  ( Y  i^i  Z )  C_  A )
53, 4syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  ( Y  i^i  Z
)  C_  A )
6 pmodlem.a . . . . 5  |-  A  =  ( Atoms `  K )
7 pmodlem.p . . . . 5  |-  .+  =  ( +P `  K
)
86, 7sspadd1 33349 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A  /\  ( Y  i^i  Z )  C_  A )  ->  X  C_  ( X  .+  ( Y  i^i  Z ) ) )
91, 2, 5, 8syl3anc 1264 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  X  C_  ( X  .+  ( Y  i^i  Z
) ) )
10 simpr 462 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  p  =  q )
11 simpl31 1086 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  q  e.  X )
1210, 11eqeltrd 2507 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  p  e.  X )
139, 12sseldd 3465 . 2  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  p  e.  ( X 
.+  ( Y  i^i  Z ) ) )
14 simpl11 1080 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  K  e.  HL )
15 hllat 32898 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
1614, 15syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  K  e.  Lat )
17 simpl12 1081 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  X  C_  A )
18 simpl13 1082 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  Y  C_  A )
1918, 4syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
( Y  i^i  Z
)  C_  A )
20 simpl31 1086 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
q  e.  X )
21 simpl32 1087 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
r  e.  Y )
22 simpl21 1083 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  Z  e.  S )
23 simpl22 1084 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  X  C_  Z )
24 simpl23 1085 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  p  e.  Z )
25 pmodlem.s . . . . . . . . . 10  |-  S  =  ( PSubSp `  K )
266, 25psubssat 33288 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  Z  e.  S )  ->  Z  C_  A )
2714, 22, 26syl2anc 665 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  Z  C_  A )
2827, 24sseldd 3465 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  p  e.  A )
2918, 21sseldd 3465 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
r  e.  A )
3017, 20sseldd 3465 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
q  e.  A )
3128, 29, 303jca 1185 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
( p  e.  A  /\  r  e.  A  /\  q  e.  A
) )
32 simpr 462 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  p  =/=  q )
33 simpl33 1088 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  p  .<_  ( q  .\/  r ) )
34 pmodlem.l . . . . . . . 8  |-  .<_  =  ( le `  K )
35 pmodlem.j . . . . . . . 8  |-  .\/  =  ( join `  K )
3634, 35, 6hlatexch1 32929 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
p  .<_  ( q  .\/  r )  ->  r  .<_  ( q  .\/  p
) ) )
3736imp 430 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  /\  p  .<_  ( q  .\/  r
) )  ->  r  .<_  ( q  .\/  p
) )
3814, 31, 32, 33, 37syl31anc 1267 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
r  .<_  ( q  .\/  p ) )
39 simp31 1041 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  q  e.  X )
4039snssd 4145 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  { q }  C_  X )
41 simp22 1039 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  X  C_  Z
)
4240, 41sstrd 3474 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  { q }  C_  Z )
43 simp23 1040 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  p  e.  Z )
4443snssd 4145 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  { p }  C_  Z )
45 simp11 1035 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  K  e.  HL )
46 simp12 1036 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  X  C_  A
)
4746, 39sseldd 3465 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  q  e.  A )
4847snssd 4145 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  { q }  C_  A )
49 simp21 1038 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  Z  e.  S )
5045, 49, 26syl2anc 665 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  Z  C_  A
)
5150, 43sseldd 3465 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  p  e.  A )
5251snssd 4145 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  { p }  C_  A )
536, 25, 7paddss 33379 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( { q }  C_  A  /\  { p }  C_  A  /\  Z  e.  S ) )  -> 
( ( { q }  C_  Z  /\  { p }  C_  Z
)  <->  ( { q }  .+  { p } )  C_  Z
) )
5445, 48, 52, 49, 53syl13anc 1266 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  ( ( { q }  C_  Z  /\  { p }  C_  Z )  <->  ( {
q }  .+  {
p } )  C_  Z ) )
5542, 44, 54mpbi2and 929 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  ( {
q }  .+  {
p } )  C_  Z )
56 simp33 1043 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  r  .<_  ( q  .\/  p ) )
5745, 15syl 17 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  K  e.  Lat )
58 simp13 1037 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  Y  C_  A
)
59 simp32 1042 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  r  e.  Y )
6058, 59sseldd 3465 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  r  e.  A )
6134, 35, 6, 7elpadd2at2 33341 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( q  e.  A  /\  p  e.  A  /\  r  e.  A
) )  ->  (
r  e.  ( { q }  .+  {
p } )  <->  r  .<_  ( q  .\/  p ) ) )
6257, 47, 51, 60, 61syl13anc 1266 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  ( r  e.  ( { q } 
.+  { p }
)  <->  r  .<_  ( q 
.\/  p ) ) )
6356, 62mpbird 235 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  r  e.  ( { q }  .+  { p } ) )
6455, 63sseldd 3465 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  r  e.  Z )
6514, 17, 18, 22, 23, 24, 20, 21, 38, 64syl333anc 1296 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
r  e.  Z )
6621, 65elind 3650 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
r  e.  ( Y  i^i  Z ) )
6734, 35, 6, 7elpaddri 33336 . . 3  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  ( Y  i^i  Z ) 
C_  A )  /\  ( q  e.  X  /\  r  e.  ( Y  i^i  Z ) )  /\  ( p  e.  A  /\  p  .<_  ( q  .\/  r ) ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) )
6816, 17, 19, 20, 66, 28, 33, 67syl322anc 1292 . 2  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  p  e.  ( X  .+  ( Y  i^i  Z
) ) )
6913, 68pm2.61dane 2738 1  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q 
.\/  r ) ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614    i^i cin 3435    C_ wss 3436   {csn 3998   class class class wbr 4423   ` cfv 5601  (class class class)co 6305   lecple 15196   joincjn 16188   Latclat 16290   Atomscatm 32798   HLchlt 32885   PSubSpcpsubsp 33030   +Pcpadd 33329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-preset 16172  df-poset 16190  df-plt 16203  df-lub 16219  df-glb 16220  df-join 16221  df-meet 16222  df-p0 16284  df-lat 16291  df-covers 32801  df-ats 32802  df-atl 32833  df-cvlat 32857  df-hlat 32886  df-psubsp 33037  df-padd 33330
This theorem is referenced by:  pmodlem2  33381
  Copyright terms: Public domain W3C validator