Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodl42N Structured version   Unicode version

Theorem pmodl42N 35048
Description: Lemma derived from modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmodl42.s  |-  S  =  ( PSubSp `  K )
pmodl42.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
pmodl42N  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( ( X  .+  Y )  .+  Z
)  i^i  ( ( X  .+  Y )  .+  W ) )  =  ( ( X  .+  Y )  .+  (
( X  .+  Z
)  i^i  ( Y  .+  W ) ) ) )

Proof of Theorem pmodl42N
StepHypRef Expression
1 incom 3696 . . . 4  |-  ( ( Y  .+  ( X 
.+  Z ) )  i^i  ( Y  .+  W ) )  =  ( ( Y  .+  W )  i^i  ( Y  .+  ( X  .+  Z ) ) )
2 simpl1 999 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  K  e.  HL )
3 simpl3 1001 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  Y  e.  S )
4 eqid 2467 . . . . . . 7  |-  ( Atoms `  K )  =  (
Atoms `  K )
5 pmodl42.s . . . . . . 7  |-  S  =  ( PSubSp `  K )
64, 5psubssat 34951 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  e.  S )  ->  Y  C_  ( Atoms `  K ) )
72, 3, 6syl2anc 661 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  Y  C_  ( Atoms `  K )
)
8 simpl2 1000 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  X  e.  S )
94, 5psubssat 34951 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  S )  ->  X  C_  ( Atoms `  K ) )
102, 8, 9syl2anc 661 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  X  C_  ( Atoms `  K )
)
11 simprl 755 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  Z  e.  S )
124, 5psubssat 34951 . . . . . . 7  |-  ( ( K  e.  HL  /\  Z  e.  S )  ->  Z  C_  ( Atoms `  K ) )
132, 11, 12syl2anc 661 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  Z  C_  ( Atoms `  K )
)
14 pmodl42.p . . . . . . 7  |-  .+  =  ( +P `  K
)
154, 14paddssat 35011 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
)  /\  Z  C_  ( Atoms `  K ) )  ->  ( X  .+  Z )  C_  ( Atoms `  K ) )
162, 10, 13, 15syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( X  .+  Z )  C_  ( Atoms `  K )
)
17 simprr 756 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  W  e.  S )
185, 14paddclN 35039 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  e.  S  /\  W  e.  S )  ->  ( Y  .+  W
)  e.  S )
192, 3, 17, 18syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( Y  .+  W )  e.  S )
204, 5psubssat 34951 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  S )  ->  W  C_  ( Atoms `  K ) )
212, 17, 20syl2anc 661 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  W  C_  ( Atoms `  K )
)
224, 14sspadd1 35012 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  ( Atoms `  K
)  /\  W  C_  ( Atoms `  K ) )  ->  Y  C_  ( Y  .+  W ) )
232, 7, 21, 22syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  Y  C_  ( Y  .+  W
) )
244, 5, 14pmod1i 35045 . . . . . 6  |-  ( ( K  e.  HL  /\  ( Y  C_  ( Atoms `  K )  /\  ( X  .+  Z )  C_  ( Atoms `  K )  /\  ( Y  .+  W
)  e.  S ) )  ->  ( Y  C_  ( Y  .+  W
)  ->  ( ( Y  .+  ( X  .+  Z ) )  i^i  ( Y  .+  W
) )  =  ( Y  .+  ( ( X  .+  Z )  i^i  ( Y  .+  W ) ) ) ) )
25243impia 1193 . . . . 5  |-  ( ( K  e.  HL  /\  ( Y  C_  ( Atoms `  K )  /\  ( X  .+  Z )  C_  ( Atoms `  K )  /\  ( Y  .+  W
)  e.  S )  /\  Y  C_  ( Y  .+  W ) )  ->  ( ( Y 
.+  ( X  .+  Z ) )  i^i  ( Y  .+  W
) )  =  ( Y  .+  ( ( X  .+  Z )  i^i  ( Y  .+  W ) ) ) )
262, 7, 16, 19, 23, 25syl131anc 1241 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( Y  .+  ( X  .+  Z ) )  i^i  ( Y  .+  W ) )  =  ( Y  .+  (
( X  .+  Z
)  i^i  ( Y  .+  W ) ) ) )
271, 26syl5reqr 2523 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( Y  .+  ( ( X 
.+  Z )  i^i  ( Y  .+  W
) ) )  =  ( ( Y  .+  W )  i^i  ( Y  .+  ( X  .+  Z ) ) ) )
2827oveq2d 6311 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( X  .+  ( Y  .+  ( ( X  .+  Z )  i^i  ( Y  .+  W ) ) ) )  =  ( X  .+  ( ( Y  .+  W )  i^i  ( Y  .+  ( X  .+  Z ) ) ) ) )
29 ssinss1 3731 . . . 4  |-  ( ( X  .+  Z ) 
C_  ( Atoms `  K
)  ->  ( ( X  .+  Z )  i^i  ( Y  .+  W
) )  C_  ( Atoms `  K ) )
3016, 29syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( X  .+  Z
)  i^i  ( Y  .+  W ) )  C_  ( Atoms `  K )
)
314, 14paddass 35035 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )  /\  ( ( X  .+  Z )  i^i  ( Y  .+  W ) ) 
C_  ( Atoms `  K
) ) )  -> 
( ( X  .+  Y )  .+  (
( X  .+  Z
)  i^i  ( Y  .+  W ) ) )  =  ( X  .+  ( Y  .+  ( ( X  .+  Z )  i^i  ( Y  .+  W ) ) ) ) )
322, 10, 7, 30, 31syl13anc 1230 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( X  .+  Y
)  .+  ( ( X  .+  Z )  i^i  ( Y  .+  W
) ) )  =  ( X  .+  ( Y  .+  ( ( X 
.+  Z )  i^i  ( Y  .+  W
) ) ) ) )
334, 14paddass 35035 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )  /\  Z  C_  ( Atoms `  K ) ) )  ->  ( ( X 
.+  Y )  .+  Z )  =  ( X  .+  ( Y 
.+  Z ) ) )
342, 10, 7, 13, 33syl13anc 1230 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( X  .+  Y
)  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
354, 14padd12N 35036 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )  /\  Z  C_  ( Atoms `  K ) ) )  ->  ( X  .+  ( Y  .+  Z ) )  =  ( Y 
.+  ( X  .+  Z ) ) )
362, 10, 7, 13, 35syl13anc 1230 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( X  .+  ( Y  .+  Z ) )  =  ( Y  .+  ( X  .+  Z ) ) )
3734, 36eqtrd 2508 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( X  .+  Y
)  .+  Z )  =  ( Y  .+  ( X  .+  Z ) ) )
384, 14paddass 35035 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )  /\  W  C_  ( Atoms `  K ) ) )  ->  ( ( X 
.+  Y )  .+  W )  =  ( X  .+  ( Y 
.+  W ) ) )
392, 10, 7, 21, 38syl13anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( X  .+  Y
)  .+  W )  =  ( X  .+  ( Y  .+  W ) ) )
4037, 39ineq12d 3706 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( ( X  .+  Y )  .+  Z
)  i^i  ( ( X  .+  Y )  .+  W ) )  =  ( ( Y  .+  ( X  .+  Z ) )  i^i  ( X 
.+  ( Y  .+  W ) ) ) )
41 incom 3696 . . . 4  |-  ( ( Y  .+  ( X 
.+  Z ) )  i^i  ( X  .+  ( Y  .+  W ) ) )  =  ( ( X  .+  ( Y  .+  W ) )  i^i  ( Y  .+  ( X  .+  Z ) ) )
4240, 41syl6eq 2524 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( ( X  .+  Y )  .+  Z
)  i^i  ( ( X  .+  Y )  .+  W ) )  =  ( ( X  .+  ( Y  .+  W ) )  i^i  ( Y 
.+  ( X  .+  Z ) ) ) )
434, 5psubssat 34951 . . . . 5  |-  ( ( K  e.  HL  /\  ( Y  .+  W )  e.  S )  -> 
( Y  .+  W
)  C_  ( Atoms `  K ) )
442, 19, 43syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( Y  .+  W )  C_  ( Atoms `  K )
)
455, 14paddclN 35039 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Z  e.  S )  ->  ( X  .+  Z
)  e.  S )
462, 8, 11, 45syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( X  .+  Z )  e.  S )
475, 14paddclN 35039 . . . . 5  |-  ( ( K  e.  HL  /\  Y  e.  S  /\  ( X  .+  Z )  e.  S )  -> 
( Y  .+  ( X  .+  Z ) )  e.  S )
482, 3, 46, 47syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( Y  .+  ( X  .+  Z ) )  e.  S )
494, 14sspadd1 35012 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
)  /\  Z  C_  ( Atoms `  K ) )  ->  X  C_  ( X  .+  Z ) )
502, 10, 13, 49syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  X  C_  ( X  .+  Z
) )
514, 14sspadd2 35013 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  .+  Z ) 
C_  ( Atoms `  K
)  /\  Y  C_  ( Atoms `  K ) )  ->  ( X  .+  Z )  C_  ( Y  .+  ( X  .+  Z ) ) )
522, 16, 7, 51syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( X  .+  Z )  C_  ( Y  .+  ( X 
.+  Z ) ) )
5350, 52sstrd 3519 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  X  C_  ( Y  .+  ( X  .+  Z ) ) )
544, 5, 14pmod1i 35045 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  ( Y  .+  W )  C_  ( Atoms `  K )  /\  ( Y  .+  ( X  .+  Z ) )  e.  S ) )  ->  ( X  C_  ( Y  .+  ( X 
.+  Z ) )  ->  ( ( X 
.+  ( Y  .+  W ) )  i^i  ( Y  .+  ( X  .+  Z ) ) )  =  ( X 
.+  ( ( Y 
.+  W )  i^i  ( Y  .+  ( X  .+  Z ) ) ) ) ) )
55543impia 1193 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  ( Y  .+  W )  C_  ( Atoms `  K )  /\  ( Y  .+  ( X  .+  Z ) )  e.  S )  /\  X  C_  ( Y  .+  ( X  .+  Z ) ) )  ->  (
( X  .+  ( Y  .+  W ) )  i^i  ( Y  .+  ( X  .+  Z ) ) )  =  ( X  .+  ( ( Y  .+  W )  i^i  ( Y  .+  ( X  .+  Z ) ) ) ) )
562, 10, 44, 48, 53, 55syl131anc 1241 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( X  .+  ( Y  .+  W ) )  i^i  ( Y  .+  ( X  .+  Z ) ) )  =  ( X  .+  ( ( Y  .+  W )  i^i  ( Y  .+  ( X  .+  Z ) ) ) ) )
5742, 56eqtrd 2508 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( ( X  .+  Y )  .+  Z
)  i^i  ( ( X  .+  Y )  .+  W ) )  =  ( X  .+  (
( Y  .+  W
)  i^i  ( Y  .+  ( X  .+  Z
) ) ) ) )
5828, 32, 573eqtr4rd 2519 1  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( ( X  .+  Y )  .+  Z
)  i^i  ( ( X  .+  Y )  .+  W ) )  =  ( ( X  .+  Y )  .+  (
( X  .+  Z
)  i^i  ( Y  .+  W ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    i^i cin 3480    C_ wss 3481   ` cfv 5594  (class class class)co 6295   Atomscatm 34461   HLchlt 34548   PSubSpcpsubsp 34693   +Pcpadd 34992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-poset 15450  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-lat 15550  df-clat 15612  df-oposet 34374  df-ol 34376  df-oml 34377  df-covers 34464  df-ats 34465  df-atl 34496  df-cvlat 34520  df-hlat 34549  df-psubsp 34700  df-padd 34993
This theorem is referenced by:  pl42lem4N  35179
  Copyright terms: Public domain W3C validator