Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodl42N Structured version   Unicode version

Theorem pmodl42N 32868
Description: Lemma derived from modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmodl42.s  |-  S  =  ( PSubSp `  K )
pmodl42.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
pmodl42N  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( ( X  .+  Y )  .+  Z
)  i^i  ( ( X  .+  Y )  .+  W ) )  =  ( ( X  .+  Y )  .+  (
( X  .+  Z
)  i^i  ( Y  .+  W ) ) ) )

Proof of Theorem pmodl42N
StepHypRef Expression
1 incom 3632 . . . 4  |-  ( ( Y  .+  ( X 
.+  Z ) )  i^i  ( Y  .+  W ) )  =  ( ( Y  .+  W )  i^i  ( Y  .+  ( X  .+  Z ) ) )
2 simpl1 1000 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  K  e.  HL )
3 simpl3 1002 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  Y  e.  S )
4 eqid 2402 . . . . . . 7  |-  ( Atoms `  K )  =  (
Atoms `  K )
5 pmodl42.s . . . . . . 7  |-  S  =  ( PSubSp `  K )
64, 5psubssat 32771 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  e.  S )  ->  Y  C_  ( Atoms `  K ) )
72, 3, 6syl2anc 659 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  Y  C_  ( Atoms `  K )
)
8 simpl2 1001 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  X  e.  S )
94, 5psubssat 32771 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  S )  ->  X  C_  ( Atoms `  K ) )
102, 8, 9syl2anc 659 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  X  C_  ( Atoms `  K )
)
11 simprl 756 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  Z  e.  S )
124, 5psubssat 32771 . . . . . . 7  |-  ( ( K  e.  HL  /\  Z  e.  S )  ->  Z  C_  ( Atoms `  K ) )
132, 11, 12syl2anc 659 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  Z  C_  ( Atoms `  K )
)
14 pmodl42.p . . . . . . 7  |-  .+  =  ( +P `  K
)
154, 14paddssat 32831 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
)  /\  Z  C_  ( Atoms `  K ) )  ->  ( X  .+  Z )  C_  ( Atoms `  K ) )
162, 10, 13, 15syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( X  .+  Z )  C_  ( Atoms `  K )
)
17 simprr 758 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  W  e.  S )
185, 14paddclN 32859 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  e.  S  /\  W  e.  S )  ->  ( Y  .+  W
)  e.  S )
192, 3, 17, 18syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( Y  .+  W )  e.  S )
204, 5psubssat 32771 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  S )  ->  W  C_  ( Atoms `  K ) )
212, 17, 20syl2anc 659 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  W  C_  ( Atoms `  K )
)
224, 14sspadd1 32832 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  ( Atoms `  K
)  /\  W  C_  ( Atoms `  K ) )  ->  Y  C_  ( Y  .+  W ) )
232, 7, 21, 22syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  Y  C_  ( Y  .+  W
) )
244, 5, 14pmod1i 32865 . . . . . 6  |-  ( ( K  e.  HL  /\  ( Y  C_  ( Atoms `  K )  /\  ( X  .+  Z )  C_  ( Atoms `  K )  /\  ( Y  .+  W
)  e.  S ) )  ->  ( Y  C_  ( Y  .+  W
)  ->  ( ( Y  .+  ( X  .+  Z ) )  i^i  ( Y  .+  W
) )  =  ( Y  .+  ( ( X  .+  Z )  i^i  ( Y  .+  W ) ) ) ) )
25243impia 1194 . . . . 5  |-  ( ( K  e.  HL  /\  ( Y  C_  ( Atoms `  K )  /\  ( X  .+  Z )  C_  ( Atoms `  K )  /\  ( Y  .+  W
)  e.  S )  /\  Y  C_  ( Y  .+  W ) )  ->  ( ( Y 
.+  ( X  .+  Z ) )  i^i  ( Y  .+  W
) )  =  ( Y  .+  ( ( X  .+  Z )  i^i  ( Y  .+  W ) ) ) )
262, 7, 16, 19, 23, 25syl131anc 1243 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( Y  .+  ( X  .+  Z ) )  i^i  ( Y  .+  W ) )  =  ( Y  .+  (
( X  .+  Z
)  i^i  ( Y  .+  W ) ) ) )
271, 26syl5reqr 2458 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( Y  .+  ( ( X 
.+  Z )  i^i  ( Y  .+  W
) ) )  =  ( ( Y  .+  W )  i^i  ( Y  .+  ( X  .+  Z ) ) ) )
2827oveq2d 6294 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( X  .+  ( Y  .+  ( ( X  .+  Z )  i^i  ( Y  .+  W ) ) ) )  =  ( X  .+  ( ( Y  .+  W )  i^i  ( Y  .+  ( X  .+  Z ) ) ) ) )
29 ssinss1 3667 . . . 4  |-  ( ( X  .+  Z ) 
C_  ( Atoms `  K
)  ->  ( ( X  .+  Z )  i^i  ( Y  .+  W
) )  C_  ( Atoms `  K ) )
3016, 29syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( X  .+  Z
)  i^i  ( Y  .+  W ) )  C_  ( Atoms `  K )
)
314, 14paddass 32855 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )  /\  ( ( X  .+  Z )  i^i  ( Y  .+  W ) ) 
C_  ( Atoms `  K
) ) )  -> 
( ( X  .+  Y )  .+  (
( X  .+  Z
)  i^i  ( Y  .+  W ) ) )  =  ( X  .+  ( Y  .+  ( ( X  .+  Z )  i^i  ( Y  .+  W ) ) ) ) )
322, 10, 7, 30, 31syl13anc 1232 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( X  .+  Y
)  .+  ( ( X  .+  Z )  i^i  ( Y  .+  W
) ) )  =  ( X  .+  ( Y  .+  ( ( X 
.+  Z )  i^i  ( Y  .+  W
) ) ) ) )
334, 14paddass 32855 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )  /\  Z  C_  ( Atoms `  K ) ) )  ->  ( ( X 
.+  Y )  .+  Z )  =  ( X  .+  ( Y 
.+  Z ) ) )
342, 10, 7, 13, 33syl13anc 1232 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( X  .+  Y
)  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
354, 14padd12N 32856 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )  /\  Z  C_  ( Atoms `  K ) ) )  ->  ( X  .+  ( Y  .+  Z ) )  =  ( Y 
.+  ( X  .+  Z ) ) )
362, 10, 7, 13, 35syl13anc 1232 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( X  .+  ( Y  .+  Z ) )  =  ( Y  .+  ( X  .+  Z ) ) )
3734, 36eqtrd 2443 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( X  .+  Y
)  .+  Z )  =  ( Y  .+  ( X  .+  Z ) ) )
384, 14paddass 32855 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )  /\  W  C_  ( Atoms `  K ) ) )  ->  ( ( X 
.+  Y )  .+  W )  =  ( X  .+  ( Y 
.+  W ) ) )
392, 10, 7, 21, 38syl13anc 1232 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( X  .+  Y
)  .+  W )  =  ( X  .+  ( Y  .+  W ) ) )
4037, 39ineq12d 3642 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( ( X  .+  Y )  .+  Z
)  i^i  ( ( X  .+  Y )  .+  W ) )  =  ( ( Y  .+  ( X  .+  Z ) )  i^i  ( X 
.+  ( Y  .+  W ) ) ) )
41 incom 3632 . . . 4  |-  ( ( Y  .+  ( X 
.+  Z ) )  i^i  ( X  .+  ( Y  .+  W ) ) )  =  ( ( X  .+  ( Y  .+  W ) )  i^i  ( Y  .+  ( X  .+  Z ) ) )
4240, 41syl6eq 2459 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( ( X  .+  Y )  .+  Z
)  i^i  ( ( X  .+  Y )  .+  W ) )  =  ( ( X  .+  ( Y  .+  W ) )  i^i  ( Y 
.+  ( X  .+  Z ) ) ) )
434, 5psubssat 32771 . . . . 5  |-  ( ( K  e.  HL  /\  ( Y  .+  W )  e.  S )  -> 
( Y  .+  W
)  C_  ( Atoms `  K ) )
442, 19, 43syl2anc 659 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( Y  .+  W )  C_  ( Atoms `  K )
)
455, 14paddclN 32859 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Z  e.  S )  ->  ( X  .+  Z
)  e.  S )
462, 8, 11, 45syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( X  .+  Z )  e.  S )
475, 14paddclN 32859 . . . . 5  |-  ( ( K  e.  HL  /\  Y  e.  S  /\  ( X  .+  Z )  e.  S )  -> 
( Y  .+  ( X  .+  Z ) )  e.  S )
482, 3, 46, 47syl3anc 1230 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( Y  .+  ( X  .+  Z ) )  e.  S )
494, 14sspadd1 32832 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
)  /\  Z  C_  ( Atoms `  K ) )  ->  X  C_  ( X  .+  Z ) )
502, 10, 13, 49syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  X  C_  ( X  .+  Z
) )
514, 14sspadd2 32833 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  .+  Z ) 
C_  ( Atoms `  K
)  /\  Y  C_  ( Atoms `  K ) )  ->  ( X  .+  Z )  C_  ( Y  .+  ( X  .+  Z ) ) )
522, 16, 7, 51syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  ( X  .+  Z )  C_  ( Y  .+  ( X 
.+  Z ) ) )
5350, 52sstrd 3452 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  X  C_  ( Y  .+  ( X  .+  Z ) ) )
544, 5, 14pmod1i 32865 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  ( Y  .+  W )  C_  ( Atoms `  K )  /\  ( Y  .+  ( X  .+  Z ) )  e.  S ) )  ->  ( X  C_  ( Y  .+  ( X 
.+  Z ) )  ->  ( ( X 
.+  ( Y  .+  W ) )  i^i  ( Y  .+  ( X  .+  Z ) ) )  =  ( X 
.+  ( ( Y 
.+  W )  i^i  ( Y  .+  ( X  .+  Z ) ) ) ) ) )
55543impia 1194 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  ( Y  .+  W )  C_  ( Atoms `  K )  /\  ( Y  .+  ( X  .+  Z ) )  e.  S )  /\  X  C_  ( Y  .+  ( X  .+  Z ) ) )  ->  (
( X  .+  ( Y  .+  W ) )  i^i  ( Y  .+  ( X  .+  Z ) ) )  =  ( X  .+  ( ( Y  .+  W )  i^i  ( Y  .+  ( X  .+  Z ) ) ) ) )
562, 10, 44, 48, 53, 55syl131anc 1243 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( X  .+  ( Y  .+  W ) )  i^i  ( Y  .+  ( X  .+  Z ) ) )  =  ( X  .+  ( ( Y  .+  W )  i^i  ( Y  .+  ( X  .+  Z ) ) ) ) )
5742, 56eqtrd 2443 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( ( X  .+  Y )  .+  Z
)  i^i  ( ( X  .+  Y )  .+  W ) )  =  ( X  .+  (
( Y  .+  W
)  i^i  ( Y  .+  ( X  .+  Z
) ) ) ) )
5828, 32, 573eqtr4rd 2454 1  |-  ( ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  /\  ( Z  e.  S  /\  W  e.  S
) )  ->  (
( ( X  .+  Y )  .+  Z
)  i^i  ( ( X  .+  Y )  .+  W ) )  =  ( ( X  .+  Y )  .+  (
( X  .+  Z
)  i^i  ( Y  .+  W ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    i^i cin 3413    C_ wss 3414   ` cfv 5569  (class class class)co 6278   Atomscatm 32281   HLchlt 32368   PSubSpcpsubsp 32513   +Pcpadd 32812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-lat 16000  df-clat 16062  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-psubsp 32520  df-padd 32813
This theorem is referenced by:  pl42lem4N  32999
  Copyright terms: Public domain W3C validator