MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmltpc Structured version   Unicode version

Theorem pmltpc 21988
Description: Any function on the reals is either increasing, decreasing, or has a triple of points in a vee formation. (This theorem was created on demand by Mario Carneiro for the 6PCM conference in Bialystok, 1-Jul-2014.) (Contributed by Mario Carneiro, 1-Jul-2014.)
Assertion
Ref Expression
pmltpc  |-  ( ( F  e.  ( RR 
^pm  RR )  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  A. y  e.  A  ( x  <_ 
y  ->  ( F `  x )  <_  ( F `  y )
)  \/  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
)  \/  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  < 
c  /\  ( (
( F `  a
)  <  ( F `  b )  /\  ( F `  c )  <  ( F `  b
) )  \/  (
( F `  b
)  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
Distinct variable groups:    a, b,
c, x, y, A    F, a, b, c, x, y

Proof of Theorem pmltpc
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexanali 2910 . . . . . . . 8  |-  ( E. y  e.  A  ( x  <_  y  /\  -.  ( F `  x
)  <_  ( F `  y ) )  <->  -.  A. y  e.  A  ( x  <_  y  ->  ( F `  x )  <_  ( F `  y )
) )
21rexbii 2959 . . . . . . 7  |-  ( E. x  e.  A  E. y  e.  A  (
x  <_  y  /\  -.  ( F `  x
)  <_  ( F `  y ) )  <->  E. x  e.  A  -.  A. y  e.  A  ( x  <_  y  ->  ( F `  x )  <_  ( F `  y )
) )
3 rexnal 2905 . . . . . . 7  |-  ( E. x  e.  A  -.  A. y  e.  A  ( x  <_  y  ->  ( F `  x )  <_  ( F `  y ) )  <->  -.  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  x )  <_  ( F `  y )
) )
42, 3bitri 249 . . . . . 6  |-  ( E. x  e.  A  E. y  e.  A  (
x  <_  y  /\  -.  ( F `  x
)  <_  ( F `  y ) )  <->  -.  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  x )  <_  ( F `  y )
) )
5 rexanali 2910 . . . . . . . 8  |-  ( E. w  e.  A  ( z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) )  <->  -.  A. w  e.  A  ( z  <_  w  ->  ( F `  w )  <_  ( F `  z )
) )
65rexbii 2959 . . . . . . 7  |-  ( E. z  e.  A  E. w  e.  A  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) )  <->  E. z  e.  A  -.  A. w  e.  A  ( z  <_  w  ->  ( F `  w )  <_  ( F `  z )
) )
7 rexnal 2905 . . . . . . . 8  |-  ( E. z  e.  A  -.  A. w  e.  A  ( z  <_  w  ->  ( F `  w )  <_  ( F `  z ) )  <->  -.  A. z  e.  A  A. w  e.  A  ( z  <_  w  ->  ( F `  w )  <_  ( F `  z )
) )
8 breq1 4459 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z  <_  w  <->  x  <_  w ) )
9 fveq2 5872 . . . . . . . . . . 11  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
109breq2d 4468 . . . . . . . . . 10  |-  ( z  =  x  ->  (
( F `  w
)  <_  ( F `  z )  <->  ( F `  w )  <_  ( F `  x )
) )
118, 10imbi12d 320 . . . . . . . . 9  |-  ( z  =  x  ->  (
( z  <_  w  ->  ( F `  w
)  <_  ( F `  z ) )  <->  ( x  <_  w  ->  ( F `  w )  <_  ( F `  x )
) ) )
12 breq2 4460 . . . . . . . . . 10  |-  ( w  =  y  ->  (
x  <_  w  <->  x  <_  y ) )
13 fveq2 5872 . . . . . . . . . . 11  |-  ( w  =  y  ->  ( F `  w )  =  ( F `  y ) )
1413breq1d 4466 . . . . . . . . . 10  |-  ( w  =  y  ->  (
( F `  w
)  <_  ( F `  x )  <->  ( F `  y )  <_  ( F `  x )
) )
1512, 14imbi12d 320 . . . . . . . . 9  |-  ( w  =  y  ->  (
( x  <_  w  ->  ( F `  w
)  <_  ( F `  x ) )  <->  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) ) )
1611, 15cbvral2v 3092 . . . . . . . 8  |-  ( A. z  e.  A  A. w  e.  A  (
z  <_  w  ->  ( F `  w )  <_  ( F `  z ) )  <->  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) )
177, 16xchbinx 310 . . . . . . 7  |-  ( E. z  e.  A  -.  A. w  e.  A  ( z  <_  w  ->  ( F `  w )  <_  ( F `  z ) )  <->  -.  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) )
186, 17bitri 249 . . . . . 6  |-  ( E. z  e.  A  E. w  e.  A  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) )  <->  -.  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) )
194, 18anbi12i 697 . . . . 5  |-  ( ( E. x  e.  A  E. y  e.  A  ( x  <_  y  /\  -.  ( F `  x
)  <_  ( F `  y ) )  /\  E. z  e.  A  E. w  e.  A  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) )  <-> 
( -.  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  x )  <_  ( F `  y )
)  /\  -.  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) ) )
20 reeanv 3025 . . . . 5  |-  ( E. x  e.  A  E. z  e.  A  ( E. y  e.  A  ( x  <_  y  /\  -.  ( F `  x
)  <_  ( F `  y ) )  /\  E. w  e.  A  ( z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) )  <-> 
( E. x  e.  A  E. y  e.  A  ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  E. z  e.  A  E. w  e.  A  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )
21 ioran 490 . . . . 5  |-  ( -.  ( A. x  e.  A  A. y  e.  A  ( x  <_ 
y  ->  ( F `  x )  <_  ( F `  y )
)  \/  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) )  <->  ( -.  A. x  e.  A  A. y  e.  A  (
x  <_  y  ->  ( F `  x )  <_  ( F `  y ) )  /\  -.  A. x  e.  A  A. y  e.  A  ( x  <_  y  -> 
( F `  y
)  <_  ( F `  x ) ) ) )
2219, 20, 213bitr4i 277 . . . 4  |-  ( E. x  e.  A  E. z  e.  A  ( E. y  e.  A  ( x  <_  y  /\  -.  ( F `  x
)  <_  ( F `  y ) )  /\  E. w  e.  A  ( z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) )  <->  -.  ( A. x  e.  A  A. y  e.  A  ( x  <_ 
y  ->  ( F `  x )  <_  ( F `  y )
)  \/  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) ) )
23 reeanv 3025 . . . . . 6  |-  ( E. y  e.  A  E. w  e.  A  (
( x  <_  y  /\  -.  ( F `  x )  <_  ( F `  y )
)  /\  ( z  <_  w  /\  -.  ( F `  w )  <_  ( F `  z
) ) )  <->  ( E. y  e.  A  (
x  <_  y  /\  -.  ( F `  x
)  <_  ( F `  y ) )  /\  E. w  e.  A  ( z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )
24 simplll 759 . . . . . . . . . 10  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F ) )
2524simpld 459 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  F  e.  ( RR  ^pm  RR ) )
2624simprd 463 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  A  C_  dom  F )
27 simpllr 760 . . . . . . . . . 10  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  ( x  e.  A  /\  z  e.  A ) )
2827simpld 459 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  x  e.  A )
29 simplrl 761 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  y  e.  A )
3027simprd 463 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  z  e.  A )
31 simplrr 762 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  w  e.  A )
32 simprll 763 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  x  <_  y )
33 simprrl 765 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  z  <_  w )
34 simprlr 764 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  -.  ( F `  x )  <_  ( F `  y
) )
35 simprrr 766 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  -.  ( F `  w )  <_  ( F `  z
) )
3625, 26, 28, 29, 30, 31, 32, 33, 34, 35pmltpclem2 21987 . . . . . . . 8  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  < 
c  /\  ( (
( F `  a
)  <  ( F `  b )  /\  ( F `  c )  <  ( F `  b
) )  \/  (
( F `  b
)  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) )
3736ex 434 . . . . . . 7  |-  ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  ( x  e.  A  /\  z  e.  A ) )  /\  ( y  e.  A  /\  w  e.  A
) )  ->  (
( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) )  ->  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  <  c  /\  ( ( ( F `
 a )  < 
( F `  b
)  /\  ( F `  c )  <  ( F `  b )
)  \/  ( ( F `  b )  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
3837rexlimdvva 2956 . . . . . 6  |-  ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F
)  /\  ( x  e.  A  /\  z  e.  A ) )  -> 
( E. y  e.  A  E. w  e.  A  ( ( x  <_  y  /\  -.  ( F `  x )  <_  ( F `  y ) )  /\  ( z  <_  w  /\  -.  ( F `  w )  <_  ( F `  z )
) )  ->  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  < 
c  /\  ( (
( F `  a
)  <  ( F `  b )  /\  ( F `  c )  <  ( F `  b
) )  \/  (
( F `  b
)  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
3923, 38syl5bir 218 . . . . 5  |-  ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F
)  /\  ( x  e.  A  /\  z  e.  A ) )  -> 
( ( E. y  e.  A  ( x  <_  y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  E. w  e.  A  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) )  ->  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  <  c  /\  ( ( ( F `
 a )  < 
( F `  b
)  /\  ( F `  c )  <  ( F `  b )
)  \/  ( ( F `  b )  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
4039rexlimdvva 2956 . . . 4  |-  ( ( F  e.  ( RR 
^pm  RR )  /\  A  C_ 
dom  F )  -> 
( E. x  e.  A  E. z  e.  A  ( E. y  e.  A  ( x  <_  y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  E. w  e.  A  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) )  ->  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  <  c  /\  ( ( ( F `
 a )  < 
( F `  b
)  /\  ( F `  c )  <  ( F `  b )
)  \/  ( ( F `  b )  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
4122, 40syl5bir 218 . . 3  |-  ( ( F  e.  ( RR 
^pm  RR )  /\  A  C_ 
dom  F )  -> 
( -.  ( A. x  e.  A  A. y  e.  A  (
x  <_  y  ->  ( F `  x )  <_  ( F `  y ) )  \/ 
A. x  e.  A  A. y  e.  A  ( x  <_  y  -> 
( F `  y
)  <_  ( F `  x ) ) )  ->  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  <  c  /\  ( ( ( F `
 a )  < 
( F `  b
)  /\  ( F `  c )  <  ( F `  b )
)  \/  ( ( F `  b )  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
4241orrd 378 . 2  |-  ( ( F  e.  ( RR 
^pm  RR )  /\  A  C_ 
dom  F )  -> 
( ( A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  x )  <_  ( F `  y )
)  \/  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) )  \/  E. a  e.  A  E. b  e.  A  E. c  e.  A  (
a  <  b  /\  b  <  c  /\  (
( ( F `  a )  <  ( F `  b )  /\  ( F `  c
)  <  ( F `  b ) )  \/  ( ( F `  b )  <  ( F `  a )  /\  ( F `  b
)  <  ( F `  c ) ) ) ) ) )
43 df-3or 974 . 2  |-  ( ( A. x  e.  A  A. y  e.  A  ( x  <_  y  -> 
( F `  x
)  <_  ( F `  y ) )  \/ 
A. x  e.  A  A. y  e.  A  ( x  <_  y  -> 
( F `  y
)  <_  ( F `  x ) )  \/ 
E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  <  c  /\  ( ( ( F `
 a )  < 
( F `  b
)  /\  ( F `  c )  <  ( F `  b )
)  \/  ( ( F `  b )  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) )  <->  ( ( A. x  e.  A  A. y  e.  A  (
x  <_  y  ->  ( F `  x )  <_  ( F `  y ) )  \/ 
A. x  e.  A  A. y  e.  A  ( x  <_  y  -> 
( F `  y
)  <_  ( F `  x ) ) )  \/  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  < 
b  /\  b  <  c  /\  ( ( ( F `  a )  <  ( F `  b )  /\  ( F `  c )  <  ( F `  b
) )  \/  (
( F `  b
)  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
4442, 43sylibr 212 1  |-  ( ( F  e.  ( RR 
^pm  RR )  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  A. y  e.  A  ( x  <_ 
y  ->  ( F `  x )  <_  ( F `  y )
)  \/  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
)  \/  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  < 
c  /\  ( (
( F `  a
)  <  ( F `  b )  /\  ( F `  c )  <  ( F `  b
) )  \/  (
( F `  b
)  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    \/ w3o 972    /\ w3a 973    e. wcel 1819   A.wral 2807   E.wrex 2808    C_ wss 3471   class class class wbr 4456   dom cdm 5008   ` cfv 5594  (class class class)co 6296    ^pm cpm 7439   RRcr 9508    < clt 9645    <_ cle 9646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-pre-lttri 9583  ax-pre-lttrn 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-po 4809  df-so 4810  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-er 7329  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator