MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmex Structured version   Unicode version

Theorem pmex 7426
Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.)
Assertion
Ref Expression
pmex  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( Fun  f  /\  f  C_  ( A  X.  B
) ) }  e.  _V )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem pmex
StepHypRef Expression
1 ancom 450 . . 3  |-  ( ( Fun  f  /\  f  C_  ( A  X.  B
) )  <->  ( f  C_  ( A  X.  B
)  /\  Fun  f ) )
21abbii 2601 . 2  |-  { f  |  ( Fun  f  /\  f  C_  ( A  X.  B ) ) }  =  { f  |  ( f  C_  ( A  X.  B
)  /\  Fun  f ) }
3 xpexg 6587 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  X.  B
)  e.  _V )
4 abssexg 4632 . . 3  |-  ( ( A  X.  B )  e.  _V  ->  { f  |  ( f  C_  ( A  X.  B
)  /\  Fun  f ) }  e.  _V )
53, 4syl 16 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( f  C_  ( A  X.  B )  /\  Fun  f ) }  e.  _V )
62, 5syl5eqel 2559 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( Fun  f  /\  f  C_  ( A  X.  B
) ) }  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1767   {cab 2452   _Vcvv 3113    C_ wss 3476    X. cxp 4997   Fun wfun 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-rex 2820  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-opab 4506  df-xp 5005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator