MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw2lem Structured version   Unicode version

Theorem pmatcollpw2lem 19445
Description: Lemma for pmatcollpw2 19446. (Contributed by AV, 3-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw1.p  |-  P  =  (Poly1 `  R )
pmatcollpw1.c  |-  C  =  ( N Mat  P )
pmatcollpw1.b  |-  B  =  ( Base `  C
)
pmatcollpw1.m  |-  .X.  =  ( .s `  P )
pmatcollpw1.e  |-  .^  =  (.g
`  (mulGrp `  P )
)
pmatcollpw1.x  |-  X  =  (var1 `  R )
Assertion
Ref Expression
pmatcollpw2lem  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) ) ) finSupp  ( 0g `  C ) )
Distinct variable groups:    B, n    n, M    n, N    R, n    n, X    .X. , n    .^ , n    P, n    B, i, j    i, M, j    i, N, j    P, i, j, n    R, i, j    i, X, j    .X. , i, j    .^ , i,
j
Allowed substitution hints:    C( i, j, n)

Proof of Theorem pmatcollpw2lem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 994 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  N  e.  Fin )
2 mpt2exga 6849 . . . . . . 7  |-  ( ( N  e.  Fin  /\  N  e.  Fin )  ->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) )  e.  _V )
31, 1, 2syl2anc 659 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
i  e.  N , 
j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) )  e.  _V )
43ralrimivw 2869 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  A. n  e.  NN0  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n )
j )  .X.  (
n  .^  X )
) )  e.  _V )
5 eqid 2454 . . . . . 6  |-  ( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) ) )  =  ( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) )
65fnmpt 5689 . . . . 5  |-  ( A. n  e.  NN0  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) )  e.  _V  ->  ( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) )  Fn  NN0 )
74, 6syl 16 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) ) )  Fn 
NN0 )
8 nn0ex 10797 . . . . 5  |-  NN0  e.  _V
98a1i 11 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  NN0  e.  _V )
10 fvex 5858 . . . . 5  |-  ( 0g
`  C )  e. 
_V
1110a1i 11 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( 0g `  C )  e. 
_V )
12 suppvalfn 6898 . . . 4  |-  ( ( ( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) )  Fn  NN0  /\  NN0 
e.  _V  /\  ( 0g `  C )  e. 
_V )  ->  (
( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) ) supp  ( 0g `  C ) )  =  { x  e.  NN0  |  ( ( n  e. 
NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n )
j )  .X.  (
n  .^  X )
) ) ) `  x )  =/=  ( 0g `  C ) } )
137, 9, 11, 12syl3anc 1226 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) ) supp  ( 0g `  C ) )  =  { x  e.  NN0  |  ( ( n  e. 
NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n )
j )  .X.  (
n  .^  X )
) ) ) `  x )  =/=  ( 0g `  C ) } )
14 pmatcollpw1.p . . . . . . . . . . 11  |-  P  =  (Poly1 `  R )
15 pmatcollpw1.c . . . . . . . . . . 11  |-  C  =  ( N Mat  P )
16 pmatcollpw1.b . . . . . . . . . . 11  |-  B  =  ( Base `  C
)
17 eqid 2454 . . . . . . . . . . 11  |-  ( 0g
`  R )  =  ( 0g `  R
)
1814, 15, 16, 17pmatcoe1fsupp 19369 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  E. y  e.  NN0  A. x  e. 
NN0  ( y  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (coe1 `  ( i M j ) ) `  x
)  =  ( 0g
`  R ) ) )
19 oveq1 6277 . . . . . . . . . . . . . . . . 17  |-  ( ( (coe1 `  ( i M j ) ) `  x )  =  ( 0g `  R )  ->  ( ( (coe1 `  ( i M j ) ) `  x
)  .X.  ( x  .^  X ) )  =  ( ( 0g `  R )  .X.  (
x  .^  X )
) )
20 pmatcollpw1.m . . . . . . . . . . . . . . . . . . . . 21  |-  .X.  =  ( .s `  P )
2120a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  .X.  =  ( .s `  P ) )
2214ply1sca 18489 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  Ring  ->  R  =  (Scalar `  P )
)
23223ad2ant2 1016 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  R  =  (Scalar `  P )
)
2423fveq2d 5852 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( 0g `  R )  =  ( 0g `  (Scalar `  P ) ) )
25 eqidd 2455 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
x  .^  X )  =  ( x  .^  X ) )
2621, 24, 25oveq123d 6291 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
( 0g `  R
)  .X.  ( x  .^  X ) )  =  ( ( 0g `  (Scalar `  P ) ) ( .s `  P
) ( x  .^  X ) ) )
2726ad3antrrr 727 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  /\  i  e.  N )  /\  j  e.  N )  ->  (
( 0g `  R
)  .X.  ( x  .^  X ) )  =  ( ( 0g `  (Scalar `  P ) ) ( .s `  P
) ( x  .^  X ) ) )
2823eqcomd 2462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (Scalar `  P )  =  R )
2928ad3antrrr 727 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  /\  i  e.  N )  /\  j  e.  N )  ->  (Scalar `  P )  =  R )
3029fveq2d 5852 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  /\  i  e.  N )  /\  j  e.  N )  ->  ( 0g `  (Scalar `  P
) )  =  ( 0g `  R ) )
3130oveq1d 6285 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  /\  i  e.  N )  /\  j  e.  N )  ->  (
( 0g `  (Scalar `  P ) ) ( .s `  P ) ( x  .^  X
) )  =  ( ( 0g `  R
) ( .s `  P ) ( x 
.^  X ) ) )
32 simpl2 998 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  R  e.  Ring )
33 pmatcollpw1.x . . . . . . . . . . . . . . . . . . . . . . . 24  |-  X  =  (var1 `  R )
34 eqid 2454 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  (mulGrp `  P )  =  (mulGrp `  P )
35 pmatcollpw1.e . . . . . . . . . . . . . . . . . . . . . . . 24  |-  .^  =  (.g
`  (mulGrp `  P )
)
36 eqid 2454 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( Base `  P )  =  (
Base `  P )
3714, 33, 34, 35, 36ply1moncl 18507 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  Ring  /\  x  e.  NN0 )  ->  (
x  .^  X )  e.  ( Base `  P
) )
38373ad2antl2 1157 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  (
x  .^  X )  e.  ( Base `  P
) )
3932, 38jca 530 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  ( R  e.  Ring  /\  (
x  .^  X )  e.  ( Base `  P
) ) )
4039adantr 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  M  e.  B
)  /\  x  e.  NN0 )  /\  i  e.  N )  ->  ( R  e.  Ring  /\  (
x  .^  X )  e.  ( Base `  P
) ) )
4140adantr 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  /\  i  e.  N )  /\  j  e.  N )  ->  ( R  e.  Ring  /\  (
x  .^  X )  e.  ( Base `  P
) ) )
42 eqid 2454 . . . . . . . . . . . . . . . . . . . 20  |-  ( .s
`  P )  =  ( .s `  P
)
4314, 36, 42, 17ply10s0 18492 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  Ring  /\  (
x  .^  X )  e.  ( Base `  P
) )  ->  (
( 0g `  R
) ( .s `  P ) ( x 
.^  X ) )  =  ( 0g `  P ) )
4441, 43syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  /\  i  e.  N )  /\  j  e.  N )  ->  (
( 0g `  R
) ( .s `  P ) ( x 
.^  X ) )  =  ( 0g `  P ) )
4527, 31, 443eqtrd 2499 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  /\  i  e.  N )  /\  j  e.  N )  ->  (
( 0g `  R
)  .X.  ( x  .^  X ) )  =  ( 0g `  P
) )
4619, 45sylan9eqr 2517 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  /\  i  e.  N )  /\  j  e.  N )  /\  (
(coe1 `  ( i M j ) ) `  x )  =  ( 0g `  R ) )  ->  ( (
(coe1 `  ( i M j ) ) `  x )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) )
4746ex 432 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  /\  i  e.  N )  /\  j  e.  N )  ->  (
( (coe1 `  ( i M j ) ) `  x )  =  ( 0g `  R )  ->  ( ( (coe1 `  ( i M j ) ) `  x
)  .X.  ( x  .^  X ) )  =  ( 0g `  P
) ) )
4847anasss 645 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  M  e.  B
)  /\  x  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( ( (coe1 `  (
i M j ) ) `  x )  =  ( 0g `  R )  ->  (
( (coe1 `  ( i M j ) ) `  x )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) )
4948ralimdvva 2865 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  ( A. i  e.  N  A. j  e.  N  ( (coe1 `  ( i M j ) ) `  x )  =  ( 0g `  R )  ->  A. i  e.  N  A. j  e.  N  ( ( (coe1 `  (
i M j ) ) `  x ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
) ) )
5049imim2d 52 . . . . . . . . . . . 12  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  (
( y  <  x  ->  A. i  e.  N  A. j  e.  N  ( (coe1 `  ( i M j ) ) `  x )  =  ( 0g `  R ) )  ->  ( y  <  x  ->  A. i  e.  N  A. j  e.  N  ( (
(coe1 `  ( i M j ) ) `  x )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) ) )
5150ralimdva 2862 . . . . . . . . . . 11  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( A. x  e.  NN0  ( y  <  x  ->  A. i  e.  N  A. j  e.  N  ( (coe1 `  ( i M j ) ) `  x )  =  ( 0g `  R ) )  ->  A. x  e.  NN0  ( y  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (
(coe1 `  ( i M j ) ) `  x )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) ) )
5251reximdv 2928 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( E. y  e.  NN0  A. x  e.  NN0  (
y  <  x  ->  A. i  e.  N  A. j  e.  N  (
(coe1 `  ( i M j ) ) `  x )  =  ( 0g `  R ) )  ->  E. y  e.  NN0  A. x  e. 
NN0  ( y  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (
(coe1 `  ( i M j ) ) `  x )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) ) )
5318, 52mpd 15 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  E. y  e.  NN0  A. x  e. 
NN0  ( y  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (
(coe1 `  ( i M j ) ) `  x )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) )
54 simpl3 999 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  M  e.  B )
55 simpr 459 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  x  e.  NN0 )
5632, 54, 553jca 1174 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  ( R  e.  Ring  /\  M  e.  B  /\  x  e.  NN0 ) )
5714, 15, 16decpmate 19434 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  Ring  /\  M  e.  B  /\  x  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  (
i ( M decompPMat  x ) j )  =  ( (coe1 `  ( i M j ) ) `  x ) )
5856, 57sylan 469 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  M  e.  B
)  /\  x  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( i ( M decompPMat  x ) j )  =  ( (coe1 `  (
i M j ) ) `  x ) )
5958oveq1d 6285 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  M  e.  B
)  /\  x  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( ( (coe1 `  (
i M j ) ) `  x ) 
.X.  ( x  .^  X ) ) )
6059eqeq1d 2456 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  M  e.  B
)  /\  x  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( ( ( i ( M decompPMat  x )
j )  .X.  (
x  .^  X )
)  =  ( 0g
`  P )  <->  ( (
(coe1 `  ( i M j ) ) `  x )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) )
61602ralbidva 2896 . . . . . . . . . . . 12  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  ( A. i  e.  N  A. j  e.  N  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
)  <->  A. i  e.  N  A. j  e.  N  ( ( (coe1 `  (
i M j ) ) `  x ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
) ) )
6261imbi2d 314 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  (
( y  <  x  ->  A. i  e.  N  A. j  e.  N  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
) )  <->  ( y  <  x  ->  A. i  e.  N  A. j  e.  N  ( (
(coe1 `  ( i M j ) ) `  x )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) ) )
6362ralbidva 2890 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( A. x  e.  NN0  ( y  <  x  ->  A. i  e.  N  A. j  e.  N  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
) )  <->  A. x  e.  NN0  ( y  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (
(coe1 `  ( i M j ) ) `  x )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) ) )
6463rexbidv 2965 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( E. y  e.  NN0  A. x  e.  NN0  (
y  <  x  ->  A. i  e.  N  A. j  e.  N  (
( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
) )  <->  E. y  e.  NN0  A. x  e. 
NN0  ( y  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (
(coe1 `  ( i M j ) ) `  x )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) ) )
6553, 64mpbird 232 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  E. y  e.  NN0  A. x  e. 
NN0  ( y  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (
i ( M decompPMat  x ) j )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) )
66 eqid 2454 . . . . . . . . . . . . 13  |-  N  =  N
6766biantrur 504 . . . . . . . . . . . 12  |-  ( A. i  e.  N  ( N  =  N  /\  A. j  e.  N  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
) )  <->  ( N  =  N  /\  A. i  e.  N  ( N  =  N  /\  A. j  e.  N  ( (
i ( M decompPMat  x ) j )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) ) )
6866biantrur 504 . . . . . . . . . . . . . 14  |-  ( A. j  e.  N  (
( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
)  <->  ( N  =  N  /\  A. j  e.  N  ( (
i ( M decompPMat  x ) j )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) )
6968bicomi 202 . . . . . . . . . . . . 13  |-  ( ( N  =  N  /\  A. j  e.  N  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
) )  <->  A. j  e.  N  ( (
i ( M decompPMat  x ) j )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) )
7069ralbii 2885 . . . . . . . . . . . 12  |-  ( A. i  e.  N  ( N  =  N  /\  A. j  e.  N  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
) )  <->  A. i  e.  N  A. j  e.  N  ( (
i ( M decompPMat  x ) j )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) )
7167, 70bitr3i 251 . . . . . . . . . . 11  |-  ( ( N  =  N  /\  A. i  e.  N  ( N  =  N  /\  A. j  e.  N  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
) ) )  <->  A. i  e.  N  A. j  e.  N  ( (
i ( M decompPMat  x ) j )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) )
7271a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
( N  =  N  /\  A. i  e.  N  ( N  =  N  /\  A. j  e.  N  ( (
i ( M decompPMat  x ) j )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) )  <->  A. i  e.  N  A. j  e.  N  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
) ) )
7372imbi2d 314 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
( y  <  x  ->  ( N  =  N  /\  A. i  e.  N  ( N  =  N  /\  A. j  e.  N  ( (
i ( M decompPMat  x ) j )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) ) )  <->  ( y  <  x  ->  A. i  e.  N  A. j  e.  N  ( (
i ( M decompPMat  x ) j )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) ) )
7473rexralbidv 2973 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( E. y  e.  NN0  A. x  e.  NN0  (
y  <  x  ->  ( N  =  N  /\  A. i  e.  N  ( N  =  N  /\  A. j  e.  N  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
) ) ) )  <->  E. y  e.  NN0  A. x  e.  NN0  (
y  <  x  ->  A. i  e.  N  A. j  e.  N  (
( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
) ) ) )
7565, 74mpbird 232 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  E. y  e.  NN0  A. x  e. 
NN0  ( y  < 
x  ->  ( N  =  N  /\  A. i  e.  N  ( N  =  N  /\  A. j  e.  N  ( (
i ( M decompPMat  x ) j )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) ) ) )
76 mpt2eq123 6329 . . . . . . . . . 10  |-  ( ( N  =  N  /\  A. i  e.  N  ( N  =  N  /\  A. j  e.  N  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
) ) )  -> 
( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) ) )  =  ( i  e.  N ,  j  e.  N  |->  ( 0g `  P ) ) )
7776imim2i 14 . . . . . . . . 9  |-  ( ( y  <  x  -> 
( N  =  N  /\  A. i  e.  N  ( N  =  N  /\  A. j  e.  N  ( (
i ( M decompPMat  x ) j )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) ) )  ->  (
y  <  x  ->  ( i  e.  N , 
j  e.  N  |->  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) ) )  =  ( i  e.  N ,  j  e.  N  |->  ( 0g `  P ) ) ) )
7877ralimi 2847 . . . . . . . 8  |-  ( A. x  e.  NN0  ( y  <  x  ->  ( N  =  N  /\  A. i  e.  N  ( N  =  N  /\  A. j  e.  N  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) )  =  ( 0g `  P
) ) ) )  ->  A. x  e.  NN0  ( y  <  x  ->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) ) )  =  ( i  e.  N ,  j  e.  N  |->  ( 0g `  P ) ) ) )
7978reximi 2922 . . . . . . 7  |-  ( E. y  e.  NN0  A. x  e.  NN0  ( y  < 
x  ->  ( N  =  N  /\  A. i  e.  N  ( N  =  N  /\  A. j  e.  N  ( (
i ( M decompPMat  x ) j )  .X.  (
x  .^  X )
)  =  ( 0g
`  P ) ) ) )  ->  E. y  e.  NN0  A. x  e. 
NN0  ( y  < 
x  ->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  x )
j )  .X.  (
x  .^  X )
) )  =  ( i  e.  N , 
j  e.  N  |->  ( 0g `  P ) ) ) )
8075, 79syl 16 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  E. y  e.  NN0  A. x  e. 
NN0  ( y  < 
x  ->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  x )
j )  .X.  (
x  .^  X )
) )  =  ( i  e.  N , 
j  e.  N  |->  ( 0g `  P ) ) ) )
81 eqidd 2455 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  (
n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) ) )  =  ( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) ) )
82 oveq2 6278 . . . . . . . . . . . . . . 15  |-  ( n  =  x  ->  ( M decompPMat  n )  =  ( M decompPMat  x ) )
8382oveqd 6287 . . . . . . . . . . . . . 14  |-  ( n  =  x  ->  (
i ( M decompPMat  n ) j )  =  ( i ( M decompPMat  x ) j ) )
84 oveq1 6277 . . . . . . . . . . . . . 14  |-  ( n  =  x  ->  (
n  .^  X )  =  ( x  .^  X ) )
8583, 84oveq12d 6288 . . . . . . . . . . . . 13  |-  ( n  =  x  ->  (
( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) )  =  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) ) )
8685mpt2eq3dv 6336 . . . . . . . . . . . 12  |-  ( n  =  x  ->  (
i  e.  N , 
j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) )  =  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  x )
j )  .X.  (
x  .^  X )
) ) )
8786adantl 464 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  M  e.  B
)  /\  x  e.  NN0 )  /\  n  =  x )  ->  (
i  e.  N , 
j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) )  =  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  x )
j )  .X.  (
x  .^  X )
) ) )
88 id 22 . . . . . . . . . . . . . . 15  |-  ( N  e.  Fin  ->  N  e.  Fin )
8988ancri 550 . . . . . . . . . . . . . 14  |-  ( N  e.  Fin  ->  ( N  e.  Fin  /\  N  e.  Fin ) )
90893ad2ant1 1015 . . . . . . . . . . . . 13  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( N  e.  Fin  /\  N  e.  Fin ) )
9190adantr 463 . . . . . . . . . . . 12  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  ( N  e.  Fin  /\  N  e.  Fin ) )
92 mpt2exga 6849 . . . . . . . . . . . 12  |-  ( ( N  e.  Fin  /\  N  e.  Fin )  ->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) ) )  e.  _V )
9391, 92syl 16 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  (
i  e.  N , 
j  e.  N  |->  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) ) )  e.  _V )
9481, 87, 55, 93fvmptd 5936 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  (
( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) ) `  x )  =  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  x )
j )  .X.  (
x  .^  X )
) ) )
9514ply1ring 18484 . . . . . . . . . . . . . 14  |-  ( R  e.  Ring  ->  P  e. 
Ring )
9695anim2i 567 . . . . . . . . . . . . 13  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( N  e.  Fin  /\  P  e.  Ring )
)
97963adant3 1014 . . . . . . . . . . . 12  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( N  e.  Fin  /\  P  e.  Ring ) )
9897adantr 463 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  ( N  e.  Fin  /\  P  e.  Ring ) )
99 eqid 2454 . . . . . . . . . . . 12  |-  ( 0g
`  P )  =  ( 0g `  P
)
10015, 99mat0op 19088 . . . . . . . . . . 11  |-  ( ( N  e.  Fin  /\  P  e.  Ring )  -> 
( 0g `  C
)  =  ( i  e.  N ,  j  e.  N  |->  ( 0g
`  P ) ) )
10198, 100syl 16 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  ( 0g `  C )  =  ( i  e.  N ,  j  e.  N  |->  ( 0g `  P
) ) )
10294, 101eqeq12d 2476 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  (
( ( n  e. 
NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n )
j )  .X.  (
n  .^  X )
) ) ) `  x )  =  ( 0g `  C )  <-> 
( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) ) )  =  ( i  e.  N ,  j  e.  N  |->  ( 0g `  P ) ) ) )
103102imbi2d 314 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  (
( y  <  x  ->  ( ( n  e. 
NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n )
j )  .X.  (
n  .^  X )
) ) ) `  x )  =  ( 0g `  C ) )  <->  ( y  < 
x  ->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  x )
j )  .X.  (
x  .^  X )
) )  =  ( i  e.  N , 
j  e.  N  |->  ( 0g `  P ) ) ) ) )
104103ralbidva 2890 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( A. x  e.  NN0  ( y  <  x  ->  ( ( n  e. 
NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n )
j )  .X.  (
n  .^  X )
) ) ) `  x )  =  ( 0g `  C ) )  <->  A. x  e.  NN0  ( y  <  x  ->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  x ) j ) 
.X.  ( x  .^  X ) ) )  =  ( i  e.  N ,  j  e.  N  |->  ( 0g `  P ) ) ) ) )
105104rexbidv 2965 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( E. y  e.  NN0  A. x  e.  NN0  (
y  <  x  ->  ( ( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) ) `  x )  =  ( 0g `  C ) )  <->  E. y  e.  NN0  A. x  e. 
NN0  ( y  < 
x  ->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  x )
j )  .X.  (
x  .^  X )
) )  =  ( i  e.  N , 
j  e.  N  |->  ( 0g `  P ) ) ) ) )
10680, 105mpbird 232 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  E. y  e.  NN0  A. x  e. 
NN0  ( y  < 
x  ->  ( (
n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) ) ) `  x )  =  ( 0g `  C ) ) )
107 nne 2655 . . . . . . . 8  |-  ( -.  ( ( n  e. 
NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n )
j )  .X.  (
n  .^  X )
) ) ) `  x )  =/=  ( 0g `  C )  <->  ( (
n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) ) ) `  x )  =  ( 0g `  C ) )
108107imbi2i 310 . . . . . . 7  |-  ( ( y  <  x  ->  -.  ( ( n  e. 
NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n )
j )  .X.  (
n  .^  X )
) ) ) `  x )  =/=  ( 0g `  C ) )  <-> 
( y  <  x  ->  ( ( n  e. 
NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n )
j )  .X.  (
n  .^  X )
) ) ) `  x )  =  ( 0g `  C ) ) )
109108ralbii 2885 . . . . . 6  |-  ( A. x  e.  NN0  ( y  <  x  ->  -.  ( ( n  e. 
NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n )
j )  .X.  (
n  .^  X )
) ) ) `  x )  =/=  ( 0g `  C ) )  <->  A. x  e.  NN0  ( y  <  x  ->  ( ( n  e. 
NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n )
j )  .X.  (
n  .^  X )
) ) ) `  x )  =  ( 0g `  C ) ) )
110109rexbii 2956 . . . . 5  |-  ( E. y  e.  NN0  A. x  e.  NN0  ( y  < 
x  ->  -.  (
( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) ) `  x )  =/=  ( 0g `  C ) )  <->  E. y  e.  NN0  A. x  e. 
NN0  ( y  < 
x  ->  ( (
n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) ) ) `  x )  =  ( 0g `  C ) ) )
111106, 110sylibr 212 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  E. y  e.  NN0  A. x  e. 
NN0  ( y  < 
x  ->  -.  (
( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) ) `  x )  =/=  ( 0g `  C ) ) )
112 rabssnn0fi 12077 . . . 4  |-  ( { x  e.  NN0  | 
( ( n  e. 
NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n )
j )  .X.  (
n  .^  X )
) ) ) `  x )  =/=  ( 0g `  C ) }  e.  Fin  <->  E. y  e.  NN0  A. x  e. 
NN0  ( y  < 
x  ->  -.  (
( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) ) `  x )  =/=  ( 0g `  C ) ) )
113111, 112sylibr 212 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  { x  e.  NN0  |  ( ( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) ) ) `  x )  =/=  ( 0g `  C ) }  e.  Fin )
11413, 113eqeltrd 2542 . 2  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) ) supp  ( 0g `  C ) )  e. 
Fin )
115 funmpt 5606 . . . 4  |-  Fun  (
n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) ) )
116115a1i 11 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  Fun  ( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) ) )
1178mptex 6118 . . . 4  |-  ( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) ) )  e. 
_V
118117a1i 11 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) ) )  e. 
_V )
119 funisfsupp 7826 . . 3  |-  ( ( Fun  ( n  e. 
NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n )
j )  .X.  (
n  .^  X )
) ) )  /\  ( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) )  e.  _V  /\  ( 0g `  C )  e.  _V )  -> 
( ( n  e. 
NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n )
j )  .X.  (
n  .^  X )
) ) ) finSupp  ( 0g `  C )  <->  ( (
n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) ) ) supp  ( 0g `  C ) )  e.  Fin ) )
120116, 118, 11, 119syl3anc 1226 . 2  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
( n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j ) 
.X.  ( n  .^  X ) ) ) ) finSupp  ( 0g `  C )  <->  ( (
n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) ) ) supp  ( 0g `  C ) )  e.  Fin ) )
121114, 120mpbird 232 1  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
n  e.  NN0  |->  ( i  e.  N ,  j  e.  N  |->  ( ( i ( M decompPMat  n ) j )  .X.  (
n  .^  X )
) ) ) finSupp  ( 0g `  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   {crab 2808   _Vcvv 3106   class class class wbr 4439    |-> cmpt 4497   Fun wfun 5564    Fn wfn 5565   ` cfv 5570  (class class class)co 6270    |-> cmpt2 6272   supp csupp 6891   Fincfn 7509   finSupp cfsupp 7821    < clt 9617   NN0cn0 10791   Basecbs 14716  Scalarcsca 14787   .scvsca 14788   0gc0g 14929  .gcmg 16255  mulGrpcmgp 17336   Ringcrg 17393  var1cv1 18410  Poly1cpl1 18411  coe1cco1 18412   Mat cmat 19076   decompPMat cdecpmat 19430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-ot 4025  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-ofr 6514  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12090  df-hash 12388  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-hom 14808  df-cco 14809  df-0g 14931  df-gsum 14932  df-prds 14937  df-pws 14939  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-mhm 16165  df-submnd 16166  df-grp 16256  df-minusg 16257  df-sbg 16258  df-mulg 16259  df-subg 16397  df-ghm 16464  df-cntz 16554  df-cmn 16999  df-abl 17000  df-mgp 17337  df-ur 17349  df-ring 17395  df-subrg 17622  df-lmod 17709  df-lss 17774  df-sra 18013  df-rgmod 18014  df-psr 18200  df-mvr 18201  df-mpl 18202  df-opsr 18204  df-psr1 18414  df-vr1 18415  df-ply1 18416  df-coe1 18417  df-dsmm 18936  df-frlm 18951  df-mat 19077  df-decpmat 19431
This theorem is referenced by:  pmatcollpw2  19446
  Copyright terms: Public domain W3C validator