Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapssat Structured version   Unicode version

Theorem pmapssat 33033
Description: The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012.)
Hypotheses
Ref Expression
pmapssat.b  |-  B  =  ( Base `  K
)
pmapssat.a  |-  A  =  ( Atoms `  K )
pmapssat.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapssat  |-  ( ( K  e.  C  /\  X  e.  B )  ->  ( M `  X
)  C_  A )

Proof of Theorem pmapssat
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 pmapssat.b . . 3  |-  B  =  ( Base `  K
)
2 eqid 2429 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 pmapssat.a . . 3  |-  A  =  ( Atoms `  K )
4 pmapssat.m . . 3  |-  M  =  ( pmap `  K
)
51, 2, 3, 4pmapval 33031 . 2  |-  ( ( K  e.  C  /\  X  e.  B )  ->  ( M `  X
)  =  { p  e.  A  |  p
( le `  K
) X } )
6 ssrab2 3552 . 2  |-  { p  e.  A  |  p
( le `  K
) X }  C_  A
75, 6syl6eqss 3520 1  |-  ( ( K  e.  C  /\  X  e.  B )  ->  ( M `  X
)  C_  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870   {crab 2786    C_ wss 3442   class class class wbr 4426   ` cfv 5601   Basecbs 15084   lecple 15159   Atomscatm 32538   pmapcpmap 32771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-pmap 32778
This theorem is referenced by:  pmapssbaN  33034  pmapglb2N  33045  pmapglb2xN  33046  pmapjoin  33126  pmapjat1  33127  pmapjat2  33128  pmapjlln1  33129  hlmod1i  33130  polpmapN  33186  2pmaplubN  33200  pmapj2N  33203  pmapocjN  33204  polatN  33205  pmapsubclN  33220  ispsubcl2N  33221  pl42lem2N  33254  pl42lem3N  33255
  Copyright terms: Public domain W3C validator