Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapojoinN Structured version   Unicode version

Theorem pmapojoinN 33915
Description: For orthogonal elements, projective map of join equals projective sum. Compare pmapjoin 33799 where only one direction holds. (Contributed by NM, 11-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapojoin.b  |-  B  =  ( Base `  K
)
pmapojoin.l  |-  .<_  =  ( le `  K )
pmapojoin.j  |-  .\/  =  ( join `  K )
pmapojoin.m  |-  M  =  ( pmap `  K
)
pmapojoin.o  |-  ._|_  =  ( oc `  K )
pmapojoin.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
pmapojoinN  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  (  ._|_  `  Y ) )  -> 
( M `  ( X  .\/  Y ) )  =  ( ( M `
 X )  .+  ( M `  Y ) ) )

Proof of Theorem pmapojoinN
StepHypRef Expression
1 pmapojoin.b . . . 4  |-  B  =  ( Base `  K
)
2 pmapojoin.j . . . 4  |-  .\/  =  ( join `  K )
3 pmapojoin.m . . . 4  |-  M  =  ( pmap `  K
)
4 pmapojoin.p . . . 4  |-  .+  =  ( +P `  K
)
5 eqid 2451 . . . 4  |-  ( _|_P `  K )  =  ( _|_P `  K )
61, 2, 3, 4, 5pmapj2N 33876 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( M `  ( X  .\/  Y ) )  =  ( ( _|_P `  K ) `
 ( ( _|_P `  K ) `
 ( ( M `
 X )  .+  ( M `  Y ) ) ) ) )
76adantr 465 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  (  ._|_  `  Y ) )  -> 
( M `  ( X  .\/  Y ) )  =  ( ( _|_P `  K ) `
 ( ( _|_P `  K ) `
 ( ( M `
 X )  .+  ( M `  Y ) ) ) ) )
8 simpl1 991 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  (  ._|_  `  Y ) )  ->  K  e.  HL )
9 simpl2 992 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  (  ._|_  `  Y ) )  ->  X  e.  B )
10 eqid 2451 . . . . . 6  |-  ( PSubCl `  K )  =  (
PSubCl `  K )
111, 3, 10pmapsubclN 33893 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( M `  X
)  e.  ( PSubCl `  K ) )
128, 9, 11syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  (  ._|_  `  Y ) )  -> 
( M `  X
)  e.  ( PSubCl `  K ) )
13 simpl3 993 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  (  ._|_  `  Y ) )  ->  Y  e.  B )
141, 3, 10pmapsubclN 33893 . . . . 5  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( M `  Y
)  e.  ( PSubCl `  K ) )
158, 13, 14syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  (  ._|_  `  Y ) )  -> 
( M `  Y
)  e.  ( PSubCl `  K ) )
16 hlop 33310 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  OP )
17163ad2ant1 1009 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
18 simp3 990 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
19 pmapojoin.o . . . . . . . . 9  |-  ._|_  =  ( oc `  K )
201, 19opoccl 33142 . . . . . . . 8  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
2117, 18, 20syl2anc 661 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
22 pmapojoin.l . . . . . . . 8  |-  .<_  =  ( le `  K )
231, 22, 3pmaple 33708 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  ( X  .<_  (  ._|_  `  Y
)  <->  ( M `  X )  C_  ( M `  (  ._|_  `  Y ) ) ) )
2421, 23syld3an3 1264 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  (  ._|_  `  Y )  <->  ( M `  X )  C_  ( M `  (  ._|_  `  Y ) ) ) )
2524biimpa 484 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  (  ._|_  `  Y ) )  -> 
( M `  X
)  C_  ( M `  (  ._|_  `  Y
) ) )
261, 19, 3, 5polpmapN 33859 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( ( _|_P `  K ) `  ( M `  Y )
)  =  ( M `
 (  ._|_  `  Y
) ) )
278, 13, 26syl2anc 661 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  (  ._|_  `  Y ) )  -> 
( ( _|_P `  K ) `  ( M `  Y )
)  =  ( M `
 (  ._|_  `  Y
) ) )
2825, 27sseqtr4d 3488 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  (  ._|_  `  Y ) )  -> 
( M `  X
)  C_  ( ( _|_P `  K ) `
 ( M `  Y ) ) )
294, 5, 10osumclN 33914 . . . 4  |-  ( ( ( K  e.  HL  /\  ( M `  X
)  e.  ( PSubCl `  K )  /\  ( M `  Y )  e.  ( PSubCl `  K )
)  /\  ( M `  X )  C_  (
( _|_P `  K ) `  ( M `  Y )
) )  ->  (
( M `  X
)  .+  ( M `  Y ) )  e.  ( PSubCl `  K )
)
308, 12, 15, 28, 29syl31anc 1222 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  (  ._|_  `  Y ) )  -> 
( ( M `  X )  .+  ( M `  Y )
)  e.  ( PSubCl `  K ) )
315, 10psubcli2N 33886 . . 3  |-  ( ( K  e.  HL  /\  ( ( M `  X )  .+  ( M `  Y )
)  e.  ( PSubCl `  K ) )  -> 
( ( _|_P `  K ) `  (
( _|_P `  K ) `  (
( M `  X
)  .+  ( M `  Y ) ) ) )  =  ( ( M `  X ) 
.+  ( M `  Y ) ) )
328, 30, 31syl2anc 661 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  (  ._|_  `  Y ) )  -> 
( ( _|_P `  K ) `  (
( _|_P `  K ) `  (
( M `  X
)  .+  ( M `  Y ) ) ) )  =  ( ( M `  X ) 
.+  ( M `  Y ) ) )
337, 32eqtrd 2491 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  (  ._|_  `  Y ) )  -> 
( M `  ( X  .\/  Y ) )  =  ( ( M `
 X )  .+  ( M `  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    C_ wss 3423   class class class wbr 4387   ` cfv 5513  (class class class)co 6187   Basecbs 14273   lecple 14344   occoc 14345   joincjn 15213   OPcops 33120   HLchlt 33298   pmapcpmap 33444   +Pcpadd 33742   _|_PcpolN 33849   PSubClcpscN 33881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4498  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469  ax-riotaBAD 32907
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-nel 2645  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-pss 3439  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4187  df-iun 4268  df-iin 4269  df-br 4388  df-opab 4446  df-mpt 4447  df-id 4731  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6148  df-ov 6190  df-oprab 6191  df-mpt2 6192  df-1st 6674  df-2nd 6675  df-undef 6889  df-poset 15215  df-plt 15227  df-lub 15243  df-glb 15244  df-join 15245  df-meet 15246  df-p0 15308  df-p1 15309  df-lat 15315  df-clat 15377  df-oposet 33124  df-ol 33126  df-oml 33127  df-covers 33214  df-ats 33215  df-atl 33246  df-cvlat 33270  df-hlat 33299  df-psubsp 33450  df-pmap 33451  df-padd 33743  df-polarityN 33850  df-psubclN 33882
This theorem is referenced by:  pl42lem1N  33926
  Copyright terms: Public domain W3C validator