Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmaple Structured version   Unicode version

Theorem pmaple 32791
Description: The projective map of a Hilbert lattice preserves ordering. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
pmaple.b  |-  B  =  ( Base `  K
)
pmaple.l  |-  .<_  =  ( le `  K )
pmaple.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmaple  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( M `  X )  C_  ( M `  Y )
) )

Proof of Theorem pmaple
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 hlpos 32396 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Poset )
2 pmaple.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
3 eqid 2404 . . . . . . . . . 10  |-  ( Atoms `  K )  =  (
Atoms `  K )
42, 3atbase 32320 . . . . . . . . 9  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
5 pmaple.l . . . . . . . . . . . . . . 15  |-  .<_  =  ( le `  K )
62, 5postr 15909 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Poset  /\  (
p  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
p  .<_  X  /\  X  .<_  Y )  ->  p  .<_  Y ) )
76exp4b 607 . . . . . . . . . . . . 13  |-  ( K  e.  Poset  ->  ( (
p  e.  B  /\  X  e.  B  /\  Y  e.  B )  ->  ( p  .<_  X  -> 
( X  .<_  Y  ->  p  .<_  Y ) ) ) )
873expd 1216 . . . . . . . . . . . 12  |-  ( K  e.  Poset  ->  ( p  e.  B  ->  ( X  e.  B  ->  ( Y  e.  B  ->  ( p  .<_  X  ->  ( X  .<_  Y  ->  p 
.<_  Y ) ) ) ) ) )
98com23 80 . . . . . . . . . . 11  |-  ( K  e.  Poset  ->  ( X  e.  B  ->  ( p  e.  B  ->  ( Y  e.  B  ->  ( p  .<_  X  ->  ( X  .<_  Y  ->  p 
.<_  Y ) ) ) ) ) )
109com34 85 . . . . . . . . . 10  |-  ( K  e.  Poset  ->  ( X  e.  B  ->  ( Y  e.  B  ->  (
p  e.  B  -> 
( p  .<_  X  -> 
( X  .<_  Y  ->  p  .<_  Y ) ) ) ) ) )
11103imp 1193 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
p  e.  B  -> 
( p  .<_  X  -> 
( X  .<_  Y  ->  p  .<_  Y ) ) ) )
124, 11syl5 32 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
p  e.  ( Atoms `  K )  ->  (
p  .<_  X  ->  ( X  .<_  Y  ->  p  .<_  Y ) ) ) )
1312com34 85 . . . . . . 7  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
p  e.  ( Atoms `  K )  ->  ( X  .<_  Y  ->  (
p  .<_  X  ->  p  .<_  Y ) ) ) )
1413com23 80 . . . . . 6  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  (
p  e.  ( Atoms `  K )  ->  (
p  .<_  X  ->  p  .<_  Y ) ) ) )
1514ralrimdv 2822 . . . . 5  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  A. p  e.  ( Atoms `  K )
( p  .<_  X  ->  p  .<_  Y ) ) )
161, 15syl3an1 1265 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  A. p  e.  ( Atoms `  K ) ( p  .<_  X  ->  p 
.<_  Y ) ) )
17 ss2rab 3517 . . . 4  |-  ( { p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  <->  A. p  e.  ( Atoms `  K ) ( p 
.<_  X  ->  p  .<_  Y ) )
1816, 17syl6ibr 229 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }
) )
19 hlclat 32389 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CLat )
20 ssrab2 3526 . . . . . . . . 9  |-  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  C_  ( Atoms `  K )
212, 3atssbase 32321 . . . . . . . . 9  |-  ( Atoms `  K )  C_  B
2220, 21sstri 3453 . . . . . . . 8  |-  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  C_  B
23 eqid 2404 . . . . . . . . 9  |-  ( lub `  K )  =  ( lub `  K )
242, 5, 23lubss 16077 . . . . . . . 8  |-  ( ( K  e.  CLat  /\  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y }  C_  B  /\  { p  e.  (
Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }
)  ->  ( ( lub `  K ) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) )
2522, 24mp3an2 1316 . . . . . . 7  |-  ( ( K  e.  CLat  /\  {
p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  ->  ( ( lub `  K ) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) )
2625ex 434 . . . . . 6  |-  ( K  e.  CLat  ->  ( { p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) ) )
2719, 26syl 17 . . . . 5  |-  ( K  e.  HL  ->  ( { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) ) )
28273ad2ant1 1020 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) ) )
29 hlomcmat 32395 . . . . . . 7  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
) )
30293ad2ant1 1020 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat ) )
31 simp2 1000 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
322, 5, 23, 3atlatmstc 32350 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (
( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  =  X )
3330, 31, 32syl2anc 661 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  =  X )
34 simp3 1001 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
352, 5, 23, 3atlatmstc 32350 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  Y  e.  B )  ->  (
( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  =  Y )
3630, 34, 35syl2anc 661 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  =  Y )
3733, 36breq12d 4410 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  X } )  .<_  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  <->  X  .<_  Y ) )
3828, 37sylibd 216 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }  ->  X  .<_  Y )
)
3918, 38impbid 192 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }
) )
40 pmaple.m . . . . 5  |-  M  =  ( pmap `  K
)
412, 5, 3, 40pmapval 32787 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( M `  X
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)
42413adant3 1019 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( M `  X
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)
432, 5, 3, 40pmapval 32787 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( M `  Y
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)
44433adant2 1018 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( M `  Y
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)
4542, 44sseq12d 3473 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( M `  X )  C_  ( M `  Y )  <->  { p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
) )
4639, 45bitr4d 258 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( M `  X )  C_  ( M `  Y )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 186    /\ w3a 976    = wceq 1407    e. wcel 1844   A.wral 2756   {crab 2760    C_ wss 3416   class class class wbr 4397   ` cfv 5571   Basecbs 14843   lecple 14918   Posetcpo 15895   lubclub 15897   CLatccla 16063   OMLcoml 32206   Atomscatm 32294   AtLatcal 32295   HLchlt 32381   pmapcpmap 32527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-preset 15883  df-poset 15901  df-plt 15914  df-lub 15930  df-glb 15931  df-join 15932  df-meet 15933  df-p0 15995  df-lat 16002  df-clat 16064  df-oposet 32207  df-ol 32209  df-oml 32210  df-covers 32297  df-ats 32298  df-atl 32329  df-cvlat 32353  df-hlat 32382  df-pmap 32534
This theorem is referenced by:  pmap11  32792  hlmod1i  32886  paddunN  32957  pmapojoinN  32998  pl42N  33013
  Copyright terms: Public domain W3C validator