Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjlln1 Structured version   Unicode version

Theorem pmapjlln1 33339
Description: The projective map of the join of a lattice element and a lattice line (expressed as the join  Q  .\/  R of two atoms). (Contributed by NM, 16-Sep-2012.)
Hypotheses
Ref Expression
pmapjat.b  |-  B  =  ( Base `  K
)
pmapjat.j  |-  .\/  =  ( join `  K )
pmapjat.a  |-  A  =  ( Atoms `  K )
pmapjat.m  |-  M  =  ( pmap `  K
)
pmapjat.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
pmapjlln1  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( M `  ( X  .\/  ( Q  .\/  R
) ) )  =  ( ( M `  X )  .+  ( M `  ( Q  .\/  R ) ) ) )

Proof of Theorem pmapjlln1
StepHypRef Expression
1 simpl 457 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  K  e.  HL )
2 pmapjat.b . . . . 5  |-  B  =  ( Base `  K
)
3 pmapjat.a . . . . 5  |-  A  =  ( Atoms `  K )
4 pmapjat.m . . . . 5  |-  M  =  ( pmap `  K
)
52, 3, 4pmapssat 33243 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( M `  X
)  C_  A )
653ad2antr1 1153 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( M `  X )  C_  A )
7 simpr2 995 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  Q  e.  A )
82, 3atbase 32774 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  B )
97, 8syl 16 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  Q  e.  B )
102, 3, 4pmapssat 33243 . . . 4  |-  ( ( K  e.  HL  /\  Q  e.  B )  ->  ( M `  Q
)  C_  A )
119, 10syldan 470 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( M `  Q )  C_  A )
12 simpr3 996 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  R  e.  A )
132, 3atbase 32774 . . . . 5  |-  ( R  e.  A  ->  R  e.  B )
1412, 13syl 16 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  R  e.  B )
152, 3, 4pmapssat 33243 . . . 4  |-  ( ( K  e.  HL  /\  R  e.  B )  ->  ( M `  R
)  C_  A )
1614, 15syldan 470 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( M `  R )  C_  A )
17 pmapjat.p . . . 4  |-  .+  =  ( +P `  K
)
183, 17paddass 33322 . . 3  |-  ( ( K  e.  HL  /\  ( ( M `  X )  C_  A  /\  ( M `  Q
)  C_  A  /\  ( M `  R ) 
C_  A ) )  ->  ( ( ( M `  X ) 
.+  ( M `  Q ) )  .+  ( M `  R ) )  =  ( ( M `  X ) 
.+  ( ( M `
 Q )  .+  ( M `  R ) ) ) )
191, 6, 11, 16, 18syl13anc 1220 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  (
( ( M `  X )  .+  ( M `  Q )
)  .+  ( M `  R ) )  =  ( ( M `  X )  .+  (
( M `  Q
)  .+  ( M `  R ) ) ) )
20 hllat 32848 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
2120adantr 465 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  K  e.  Lat )
22 simpr1 994 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  X  e.  B )
23 pmapjat.j . . . . . 6  |-  .\/  =  ( join `  K )
242, 23latjcl 15213 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Q  e.  B )  ->  ( X  .\/  Q
)  e.  B )
2521, 22, 9, 24syl3anc 1218 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( X  .\/  Q )  e.  B )
262, 23, 3, 4, 17pmapjat1 33337 . . . 4  |-  ( ( K  e.  HL  /\  ( X  .\/  Q )  e.  B  /\  R  e.  A )  ->  ( M `  ( ( X  .\/  Q )  .\/  R ) )  =  ( ( M `  ( X  .\/  Q ) ) 
.+  ( M `  R ) ) )
271, 25, 12, 26syl3anc 1218 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( M `  ( ( X  .\/  Q )  .\/  R ) )  =  ( ( M `  ( X  .\/  Q ) ) 
.+  ( M `  R ) ) )
282, 23latjass 15257 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Q  e.  B  /\  R  e.  B
) )  ->  (
( X  .\/  Q
)  .\/  R )  =  ( X  .\/  ( Q  .\/  R ) ) )
2921, 22, 9, 14, 28syl13anc 1220 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  (
( X  .\/  Q
)  .\/  R )  =  ( X  .\/  ( Q  .\/  R ) ) )
3029fveq2d 5690 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( M `  ( ( X  .\/  Q )  .\/  R ) )  =  ( M `  ( X 
.\/  ( Q  .\/  R ) ) ) )
312, 23, 3, 4, 17pmapjat1 33337 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( M `  ( X  .\/  Q ) )  =  ( ( M `
 X )  .+  ( M `  Q ) ) )
32313adant3r3 1198 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( M `  ( X  .\/  Q ) )  =  ( ( M `  X )  .+  ( M `  Q )
) )
3332oveq1d 6101 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  (
( M `  ( X  .\/  Q ) ) 
.+  ( M `  R ) )  =  ( ( ( M `
 X )  .+  ( M `  Q ) )  .+  ( M `
 R ) ) )
3427, 30, 333eqtr3d 2478 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( M `  ( X  .\/  ( Q  .\/  R
) ) )  =  ( ( ( M `
 X )  .+  ( M `  Q ) )  .+  ( M `
 R ) ) )
352, 23, 3, 4, 17pmapjat1 33337 . . . 4  |-  ( ( K  e.  HL  /\  Q  e.  B  /\  R  e.  A )  ->  ( M `  ( Q  .\/  R ) )  =  ( ( M `
 Q )  .+  ( M `  R ) ) )
361, 9, 12, 35syl3anc 1218 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( M `  ( Q  .\/  R ) )  =  ( ( M `  Q )  .+  ( M `  R )
) )
3736oveq2d 6102 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  (
( M `  X
)  .+  ( M `  ( Q  .\/  R
) ) )  =  ( ( M `  X )  .+  (
( M `  Q
)  .+  ( M `  R ) ) ) )
3819, 34, 373eqtr4d 2480 1  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( M `  ( X  .\/  ( Q  .\/  R
) ) )  =  ( ( M `  X )  .+  ( M `  ( Q  .\/  R ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    C_ wss 3323   ` cfv 5413  (class class class)co 6086   Basecbs 14166   joincjn 15106   Latclat 15207   Atomscatm 32748   HLchlt 32835   pmapcpmap 32981   +Pcpadd 33279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-1st 6572  df-2nd 6573  df-poset 15108  df-plt 15120  df-lub 15136  df-glb 15137  df-join 15138  df-meet 15139  df-p0 15201  df-lat 15208  df-clat 15270  df-oposet 32661  df-ol 32663  df-oml 32664  df-covers 32751  df-ats 32752  df-atl 32783  df-cvlat 32807  df-hlat 32836  df-pmap 32988  df-padd 33280
This theorem is referenced by:  llnmod1i2  33344
  Copyright terms: Public domain W3C validator