Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2xN Structured version   Unicode version

Theorem pmapglb2xN 35219
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb2N 35218, where we read  S as  S ( i ). Extension of Theorem 15.5.2 of [MaedaMaeda] p. 62 that allows  I  =  (/). (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b  |-  B  =  ( Base `  K
)
pmapglb2.g  |-  G  =  ( glb `  K
)
pmapglb2.a  |-  A  =  ( Atoms `  K )
pmapglb2.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapglb2xN  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( M `  ( G `  { y  |  E. i  e.  I 
y  =  S }
) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) )
Distinct variable groups:    A, i    y, i, B    i, I,
y    i, K, y    y, S
Allowed substitution hints:    A( y)    S( i)    G( y, i)    M( y, i)

Proof of Theorem pmapglb2xN
StepHypRef Expression
1 hlop 34810 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OP )
2 pmapglb2.g . . . . . . . 8  |-  G  =  ( glb `  K
)
3 eqid 2441 . . . . . . . 8  |-  ( 1.
`  K )  =  ( 1. `  K
)
42, 3glb0N 34641 . . . . . . 7  |-  ( K  e.  OP  ->  ( G `  (/) )  =  ( 1. `  K
) )
54fveq2d 5857 . . . . . 6  |-  ( K  e.  OP  ->  ( M `  ( G `  (/) ) )  =  ( M `  ( 1. `  K ) ) )
6 pmapglb2.a . . . . . . 7  |-  A  =  ( Atoms `  K )
7 pmapglb2.m . . . . . . 7  |-  M  =  ( pmap `  K
)
83, 6, 7pmap1N 35214 . . . . . 6  |-  ( K  e.  OP  ->  ( M `  ( 1. `  K ) )  =  A )
95, 8eqtrd 2482 . . . . 5  |-  ( K  e.  OP  ->  ( M `  ( G `  (/) ) )  =  A )
101, 9syl 16 . . . 4  |-  ( K  e.  HL  ->  ( M `  ( G `  (/) ) )  =  A )
11 rexeq 3039 . . . . . . . . 9  |-  ( I  =  (/)  ->  ( E. i  e.  I  y  =  S  <->  E. i  e.  (/)  y  =  S ) )
1211abbidv 2577 . . . . . . . 8  |-  ( I  =  (/)  ->  { y  |  E. i  e.  I  y  =  S }  =  { y  |  E. i  e.  (/)  y  =  S } )
13 rex0 3782 . . . . . . . . 9  |-  -.  E. i  e.  (/)  y  =  S
1413abf 3802 . . . . . . . 8  |-  { y  |  E. i  e.  (/)  y  =  S }  =  (/)
1512, 14syl6eq 2498 . . . . . . 7  |-  ( I  =  (/)  ->  { y  |  E. i  e.  I  y  =  S }  =  (/) )
1615fveq2d 5857 . . . . . 6  |-  ( I  =  (/)  ->  ( G `
 { y  |  E. i  e.  I 
y  =  S }
)  =  ( G `
 (/) ) )
1716fveq2d 5857 . . . . 5  |-  ( I  =  (/)  ->  ( M `
 ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  ( M `  ( G `  (/) ) ) )
18 riin0 4386 . . . . 5  |-  ( I  =  (/)  ->  ( A  i^i  |^|_ i  e.  I 
( M `  S
) )  =  A )
1917, 18eqeq12d 2463 . . . 4  |-  ( I  =  (/)  ->  ( ( M `  ( G `
 { y  |  E. i  e.  I 
y  =  S }
) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) )  <->  ( M `  ( G `  (/) ) )  =  A ) )
2010, 19syl5ibrcom 222 . . 3  |-  ( K  e.  HL  ->  (
I  =  (/)  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) ) )
2120adantr 465 . 2  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( I  =  (/)  ->  ( M `  ( G `  { y  |  E. i  e.  I 
y  =  S }
) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) ) )
22 pmapglb2.b . . . . 5  |-  B  =  ( Base `  K
)
2322, 2, 7pmapglbx 35216 . . . 4  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  |^|_ i  e.  I 
( M `  S
) )
24 nfv 1692 . . . . . . . . . 10  |-  F/ i  K  e.  HL
25 nfra1 2822 . . . . . . . . . 10  |-  F/ i A. i  e.  I  S  e.  B
2624, 25nfan 1912 . . . . . . . . 9  |-  F/ i ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )
27 simpr 461 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  i  e.  I )
28 simpll 753 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  K  e.  HL )
29 rspa 2808 . . . . . . . . . . . . 13  |-  ( ( A. i  e.  I  S  e.  B  /\  i  e.  I )  ->  S  e.  B )
3029adantll 713 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  S  e.  B )
3122, 6, 7pmapssat 35206 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  S  e.  B )  ->  ( M `  S
)  C_  A )
3228, 30, 31syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  ( M `  S )  C_  A
)
3327, 32jca 532 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  ( i  e.  I  /\  ( M `  S )  C_  A ) )
3433ex 434 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( i  e.  I  ->  ( i  e.  I  /\  ( M `  S
)  C_  A )
) )
3526, 34eximd 1866 . . . . . . . 8  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( E. i  i  e.  I  ->  E. i
( i  e.  I  /\  ( M `  S
)  C_  A )
) )
36 n0 3777 . . . . . . . 8  |-  ( I  =/=  (/)  <->  E. i  i  e.  I )
37 df-rex 2797 . . . . . . . 8  |-  ( E. i  e.  I  ( M `  S ) 
C_  A  <->  E. i
( i  e.  I  /\  ( M `  S
)  C_  A )
)
3835, 36, 373imtr4g 270 . . . . . . 7  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( I  =/=  (/)  ->  E. i  e.  I  ( M `  S )  C_  A
) )
39383impia 1192 . . . . . 6  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  E. i  e.  I  ( M `  S )  C_  A
)
40 iinss 4363 . . . . . 6  |-  ( E. i  e.  I  ( M `  S ) 
C_  A  ->  |^|_ i  e.  I  ( M `  S )  C_  A
)
4139, 40syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  |^|_ i  e.  I  ( M `  S )  C_  A
)
42 sseqin2 3700 . . . . 5  |-  ( |^|_ i  e.  I  ( M `  S )  C_  A  <->  ( A  i^i  |^|_ i  e.  I  ( M `  S ) )  =  |^|_ i  e.  I  ( M `  S ) )
4341, 42sylib 196 . . . 4  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( A  i^i  |^|_ i  e.  I 
( M `  S
) )  =  |^|_ i  e.  I  ( M `  S )
)
4423, 43eqtr4d 2485 . . 3  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) )
45443expia 1197 . 2  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( I  =/=  (/)  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) ) )
4621, 45pm2.61dne 2758 1  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( M `  ( G `  { y  |  E. i  e.  I 
y  =  S }
) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 972    = wceq 1381   E.wex 1597    e. wcel 1802   {cab 2426    =/= wne 2636   A.wral 2791   E.wrex 2792    i^i cin 3458    C_ wss 3459   (/)c0 3768   |^|_ciin 4313   ` cfv 5575   Basecbs 14506   glbcglb 15443   1.cp1 15539   OPcops 34620   Atomscatm 34711   HLchlt 34798   pmapcpmap 34944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4545  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-op 4018  df-uni 4232  df-iun 4314  df-iin 4315  df-br 4435  df-opab 4493  df-mpt 4494  df-id 4782  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-riota 6239  df-ov 6281  df-oprab 6282  df-preset 15428  df-poset 15446  df-lub 15475  df-glb 15476  df-join 15477  df-meet 15478  df-p1 15541  df-lat 15547  df-clat 15609  df-oposet 34624  df-ol 34626  df-oml 34627  df-ats 34715  df-hlat 34799  df-pmap 34951
This theorem is referenced by:  polval2N  35353
  Copyright terms: Public domain W3C validator