Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2xN Structured version   Visualization version   Unicode version

Theorem pmapglb2xN 33408
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb2N 33407, where we read  S as  S ( i ). Extension of Theorem 15.5.2 of [MaedaMaeda] p. 62 that allows  I  =  (/). (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b  |-  B  =  ( Base `  K
)
pmapglb2.g  |-  G  =  ( glb `  K
)
pmapglb2.a  |-  A  =  ( Atoms `  K )
pmapglb2.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapglb2xN  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( M `  ( G `  { y  |  E. i  e.  I 
y  =  S }
) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) )
Distinct variable groups:    A, i    y, i, B    i, I,
y    i, K, y    y, S
Allowed substitution hints:    A( y)    S( i)    G( y, i)    M( y, i)

Proof of Theorem pmapglb2xN
StepHypRef Expression
1 hlop 32999 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OP )
2 pmapglb2.g . . . . . . . 8  |-  G  =  ( glb `  K
)
3 eqid 2471 . . . . . . . 8  |-  ( 1.
`  K )  =  ( 1. `  K
)
42, 3glb0N 32830 . . . . . . 7  |-  ( K  e.  OP  ->  ( G `  (/) )  =  ( 1. `  K
) )
54fveq2d 5883 . . . . . 6  |-  ( K  e.  OP  ->  ( M `  ( G `  (/) ) )  =  ( M `  ( 1. `  K ) ) )
6 pmapglb2.a . . . . . . 7  |-  A  =  ( Atoms `  K )
7 pmapglb2.m . . . . . . 7  |-  M  =  ( pmap `  K
)
83, 6, 7pmap1N 33403 . . . . . 6  |-  ( K  e.  OP  ->  ( M `  ( 1. `  K ) )  =  A )
95, 8eqtrd 2505 . . . . 5  |-  ( K  e.  OP  ->  ( M `  ( G `  (/) ) )  =  A )
101, 9syl 17 . . . 4  |-  ( K  e.  HL  ->  ( M `  ( G `  (/) ) )  =  A )
11 rexeq 2974 . . . . . . . . 9  |-  ( I  =  (/)  ->  ( E. i  e.  I  y  =  S  <->  E. i  e.  (/)  y  =  S ) )
1211abbidv 2589 . . . . . . . 8  |-  ( I  =  (/)  ->  { y  |  E. i  e.  I  y  =  S }  =  { y  |  E. i  e.  (/)  y  =  S } )
13 rex0 3737 . . . . . . . . 9  |-  -.  E. i  e.  (/)  y  =  S
1413abf 3772 . . . . . . . 8  |-  { y  |  E. i  e.  (/)  y  =  S }  =  (/)
1512, 14syl6eq 2521 . . . . . . 7  |-  ( I  =  (/)  ->  { y  |  E. i  e.  I  y  =  S }  =  (/) )
1615fveq2d 5883 . . . . . 6  |-  ( I  =  (/)  ->  ( G `
 { y  |  E. i  e.  I 
y  =  S }
)  =  ( G `
 (/) ) )
1716fveq2d 5883 . . . . 5  |-  ( I  =  (/)  ->  ( M `
 ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  ( M `  ( G `  (/) ) ) )
18 riin0 4343 . . . . 5  |-  ( I  =  (/)  ->  ( A  i^i  |^|_ i  e.  I 
( M `  S
) )  =  A )
1917, 18eqeq12d 2486 . . . 4  |-  ( I  =  (/)  ->  ( ( M `  ( G `
 { y  |  E. i  e.  I 
y  =  S }
) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) )  <->  ( M `  ( G `  (/) ) )  =  A ) )
2010, 19syl5ibrcom 230 . . 3  |-  ( K  e.  HL  ->  (
I  =  (/)  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) ) )
2120adantr 472 . 2  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( I  =  (/)  ->  ( M `  ( G `  { y  |  E. i  e.  I 
y  =  S }
) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) ) )
22 pmapglb2.b . . . . 5  |-  B  =  ( Base `  K
)
2322, 2, 7pmapglbx 33405 . . . 4  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  |^|_ i  e.  I 
( M `  S
) )
24 nfv 1769 . . . . . . . . . 10  |-  F/ i  K  e.  HL
25 nfra1 2785 . . . . . . . . . 10  |-  F/ i A. i  e.  I  S  e.  B
2624, 25nfan 2031 . . . . . . . . 9  |-  F/ i ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )
27 simpr 468 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  i  e.  I )
28 simpll 768 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  K  e.  HL )
29 rspa 2774 . . . . . . . . . . . . 13  |-  ( ( A. i  e.  I  S  e.  B  /\  i  e.  I )  ->  S  e.  B )
3029adantll 728 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  S  e.  B )
3122, 6, 7pmapssat 33395 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  S  e.  B )  ->  ( M `  S
)  C_  A )
3228, 30, 31syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  ( M `  S )  C_  A
)
3327, 32jca 541 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  ( i  e.  I  /\  ( M `  S )  C_  A ) )
3433ex 441 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( i  e.  I  ->  ( i  e.  I  /\  ( M `  S
)  C_  A )
) )
3526, 34eximd 1980 . . . . . . . 8  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( E. i  i  e.  I  ->  E. i
( i  e.  I  /\  ( M `  S
)  C_  A )
) )
36 n0 3732 . . . . . . . 8  |-  ( I  =/=  (/)  <->  E. i  i  e.  I )
37 df-rex 2762 . . . . . . . 8  |-  ( E. i  e.  I  ( M `  S ) 
C_  A  <->  E. i
( i  e.  I  /\  ( M `  S
)  C_  A )
)
3835, 36, 373imtr4g 278 . . . . . . 7  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( I  =/=  (/)  ->  E. i  e.  I  ( M `  S )  C_  A
) )
39383impia 1228 . . . . . 6  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  E. i  e.  I  ( M `  S )  C_  A
)
40 iinss 4320 . . . . . 6  |-  ( E. i  e.  I  ( M `  S ) 
C_  A  ->  |^|_ i  e.  I  ( M `  S )  C_  A
)
4139, 40syl 17 . . . . 5  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  |^|_ i  e.  I  ( M `  S )  C_  A
)
42 sseqin2 3642 . . . . 5  |-  ( |^|_ i  e.  I  ( M `  S )  C_  A  <->  ( A  i^i  |^|_ i  e.  I  ( M `  S ) )  =  |^|_ i  e.  I  ( M `  S ) )
4341, 42sylib 201 . . . 4  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( A  i^i  |^|_ i  e.  I 
( M `  S
) )  =  |^|_ i  e.  I  ( M `  S )
)
4423, 43eqtr4d 2508 . . 3  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) )
45443expia 1233 . 2  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( I  =/=  (/)  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) ) )
4621, 45pm2.61dne 2729 1  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( M `  ( G `  { y  |  E. i  e.  I 
y  =  S }
) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671    e. wcel 1904   {cab 2457    =/= wne 2641   A.wral 2756   E.wrex 2757    i^i cin 3389    C_ wss 3390   (/)c0 3722   |^|_ciin 4270   ` cfv 5589   Basecbs 15199   glbcglb 16266   1.cp1 16362   OPcops 32809   Atomscatm 32900   HLchlt 32987   pmapcpmap 33133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-preset 16251  df-poset 16269  df-lub 16298  df-glb 16299  df-join 16300  df-meet 16301  df-p1 16364  df-lat 16370  df-clat 16432  df-oposet 32813  df-ol 32815  df-oml 32816  df-ats 32904  df-hlat 32988  df-pmap 33140
This theorem is referenced by:  polval2N  33542
  Copyright terms: Public domain W3C validator