Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2xN Structured version   Unicode version

Theorem pmapglb2xN 33138
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb2N 33137, where we read  S as  S ( i ). Extension of Theorem 15.5.2 of [MaedaMaeda] p. 62 that allows  I  =  (/). (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b  |-  B  =  ( Base `  K
)
pmapglb2.g  |-  G  =  ( glb `  K
)
pmapglb2.a  |-  A  =  ( Atoms `  K )
pmapglb2.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapglb2xN  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( M `  ( G `  { y  |  E. i  e.  I 
y  =  S }
) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) )
Distinct variable groups:    A, i    y, i, B    i, I,
y    i, K, y    y, S
Allowed substitution hints:    A( y)    S( i)    G( y, i)    M( y, i)

Proof of Theorem pmapglb2xN
StepHypRef Expression
1 hlop 32729 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OP )
2 pmapglb2.g . . . . . . . 8  |-  G  =  ( glb `  K
)
3 eqid 2441 . . . . . . . 8  |-  ( 1.
`  K )  =  ( 1. `  K
)
42, 3glb0N 32560 . . . . . . 7  |-  ( K  e.  OP  ->  ( G `  (/) )  =  ( 1. `  K
) )
54fveq2d 5692 . . . . . 6  |-  ( K  e.  OP  ->  ( M `  ( G `  (/) ) )  =  ( M `  ( 1. `  K ) ) )
6 pmapglb2.a . . . . . . 7  |-  A  =  ( Atoms `  K )
7 pmapglb2.m . . . . . . 7  |-  M  =  ( pmap `  K
)
83, 6, 7pmap1N 33133 . . . . . 6  |-  ( K  e.  OP  ->  ( M `  ( 1. `  K ) )  =  A )
95, 8eqtrd 2473 . . . . 5  |-  ( K  e.  OP  ->  ( M `  ( G `  (/) ) )  =  A )
101, 9syl 16 . . . 4  |-  ( K  e.  HL  ->  ( M `  ( G `  (/) ) )  =  A )
11 rexeq 2916 . . . . . . . . 9  |-  ( I  =  (/)  ->  ( E. i  e.  I  y  =  S  <->  E. i  e.  (/)  y  =  S ) )
1211abbidv 2555 . . . . . . . 8  |-  ( I  =  (/)  ->  { y  |  E. i  e.  I  y  =  S }  =  { y  |  E. i  e.  (/)  y  =  S } )
13 rex0 3648 . . . . . . . . 9  |-  -.  E. i  e.  (/)  y  =  S
1413abf 3668 . . . . . . . 8  |-  { y  |  E. i  e.  (/)  y  =  S }  =  (/)
1512, 14syl6eq 2489 . . . . . . 7  |-  ( I  =  (/)  ->  { y  |  E. i  e.  I  y  =  S }  =  (/) )
1615fveq2d 5692 . . . . . 6  |-  ( I  =  (/)  ->  ( G `
 { y  |  E. i  e.  I 
y  =  S }
)  =  ( G `
 (/) ) )
1716fveq2d 5692 . . . . 5  |-  ( I  =  (/)  ->  ( M `
 ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  ( M `  ( G `  (/) ) ) )
18 riin0 4241 . . . . 5  |-  ( I  =  (/)  ->  ( A  i^i  |^|_ i  e.  I 
( M `  S
) )  =  A )
1917, 18eqeq12d 2455 . . . 4  |-  ( I  =  (/)  ->  ( ( M `  ( G `
 { y  |  E. i  e.  I 
y  =  S }
) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) )  <->  ( M `  ( G `  (/) ) )  =  A ) )
2010, 19syl5ibrcom 222 . . 3  |-  ( K  e.  HL  ->  (
I  =  (/)  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) ) )
2120adantr 462 . 2  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( I  =  (/)  ->  ( M `  ( G `  { y  |  E. i  e.  I 
y  =  S }
) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) ) )
22 pmapglb2.b . . . . 5  |-  B  =  ( Base `  K
)
2322, 2, 7pmapglbx 33135 . . . 4  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  |^|_ i  e.  I 
( M `  S
) )
24 nfv 1678 . . . . . . . . . 10  |-  F/ i  K  e.  HL
25 nfra1 2764 . . . . . . . . . 10  |-  F/ i A. i  e.  I  S  e.  B
2624, 25nfan 1865 . . . . . . . . 9  |-  F/ i ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )
27 simpr 458 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  i  e.  I )
28 simpll 748 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  K  e.  HL )
29 rsp 2774 . . . . . . . . . . . . . 14  |-  ( A. i  e.  I  S  e.  B  ->  ( i  e.  I  ->  S  e.  B ) )
3029imp 429 . . . . . . . . . . . . 13  |-  ( ( A. i  e.  I  S  e.  B  /\  i  e.  I )  ->  S  e.  B )
3130adantll 708 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  S  e.  B )
3222, 6, 7pmapssat 33125 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  S  e.  B )  ->  ( M `  S
)  C_  A )
3328, 31, 32syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  ( M `  S )  C_  A
)
3427, 33jca 529 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  i  e.  I
)  ->  ( i  e.  I  /\  ( M `  S )  C_  A ) )
3534ex 434 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( i  e.  I  ->  ( i  e.  I  /\  ( M `  S
)  C_  A )
) )
3626, 35eximd 1821 . . . . . . . 8  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( E. i  i  e.  I  ->  E. i
( i  e.  I  /\  ( M `  S
)  C_  A )
) )
37 n0 3643 . . . . . . . 8  |-  ( I  =/=  (/)  <->  E. i  i  e.  I )
38 df-rex 2719 . . . . . . . 8  |-  ( E. i  e.  I  ( M `  S ) 
C_  A  <->  E. i
( i  e.  I  /\  ( M `  S
)  C_  A )
)
3936, 37, 383imtr4g 270 . . . . . . 7  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( I  =/=  (/)  ->  E. i  e.  I  ( M `  S )  C_  A
) )
40393impia 1179 . . . . . 6  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  E. i  e.  I  ( M `  S )  C_  A
)
41 iinss 4218 . . . . . 6  |-  ( E. i  e.  I  ( M `  S ) 
C_  A  ->  |^|_ i  e.  I  ( M `  S )  C_  A
)
4240, 41syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  |^|_ i  e.  I  ( M `  S )  C_  A
)
43 sseqin2 3566 . . . . 5  |-  ( |^|_ i  e.  I  ( M `  S )  C_  A  <->  ( A  i^i  |^|_ i  e.  I  ( M `  S ) )  =  |^|_ i  e.  I  ( M `  S ) )
4442, 43sylib 196 . . . 4  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( A  i^i  |^|_ i  e.  I 
( M `  S
) )  =  |^|_ i  e.  I  ( M `  S )
)
4523, 44eqtr4d 2476 . . 3  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) )
46453expia 1184 . 2  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( I  =/=  (/)  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) ) )
4721, 46pm2.61dne 2686 1  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( M `  ( G `  { y  |  E. i  e.  I 
y  =  S }
) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364   E.wex 1591    e. wcel 1761   {cab 2427    =/= wne 2604   A.wral 2713   E.wrex 2714    i^i cin 3324    C_ wss 3325   (/)c0 3634   |^|_ciin 4169   ` cfv 5415   Basecbs 14170   glbcglb 15109   1.cp1 15204   OPcops 32539   Atomscatm 32630   HLchlt 32717   pmapcpmap 32863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-poset 15112  df-lub 15140  df-glb 15141  df-join 15142  df-meet 15143  df-p1 15206  df-lat 15212  df-clat 15274  df-oposet 32543  df-ol 32545  df-oml 32546  df-ats 32634  df-hlat 32718  df-pmap 32870
This theorem is referenced by:  polval2N  33272
  Copyright terms: Public domain W3C validator