MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.74 Structured version   Unicode version

Theorem pm5.74 247
Description: Distribution of implication over biconditional. Theorem *5.74 of [WhiteheadRussell] p. 126. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 11-Apr-2013.)
Assertion
Ref Expression
pm5.74  |-  ( (
ph  ->  ( ps  <->  ch )
)  <->  ( ( ph  ->  ps )  <->  ( ph  ->  ch ) ) )

Proof of Theorem pm5.74
StepHypRef Expression
1 biimp 196 . . . 4  |-  ( ( ps  <->  ch )  ->  ( ps  ->  ch ) )
21imim3i 61 . . 3  |-  ( (
ph  ->  ( ps  <->  ch )
)  ->  ( ( ph  ->  ps )  -> 
( ph  ->  ch )
) )
3 biimpr 201 . . . 4  |-  ( ( ps  <->  ch )  ->  ( ch  ->  ps ) )
43imim3i 61 . . 3  |-  ( (
ph  ->  ( ps  <->  ch )
)  ->  ( ( ph  ->  ch )  -> 
( ph  ->  ps )
) )
52, 4impbid 193 . 2  |-  ( (
ph  ->  ( ps  <->  ch )
)  ->  ( ( ph  ->  ps )  <->  ( ph  ->  ch ) ) )
6 biimp 196 . . . 4  |-  ( ( ( ph  ->  ps ) 
<->  ( ph  ->  ch ) )  ->  (
( ph  ->  ps )  ->  ( ph  ->  ch ) ) )
76pm2.86d 102 . . 3  |-  ( ( ( ph  ->  ps ) 
<->  ( ph  ->  ch ) )  ->  ( ph  ->  ( ps  ->  ch ) ) )
8 biimpr 201 . . . 4  |-  ( ( ( ph  ->  ps ) 
<->  ( ph  ->  ch ) )  ->  (
( ph  ->  ch )  ->  ( ph  ->  ps ) ) )
98pm2.86d 102 . . 3  |-  ( ( ( ph  ->  ps ) 
<->  ( ph  ->  ch ) )  ->  ( ph  ->  ( ch  ->  ps ) ) )
107, 9impbidd 191 . 2  |-  ( ( ( ph  ->  ps ) 
<->  ( ph  ->  ch ) )  ->  ( ph  ->  ( ps  <->  ch )
) )
115, 10impbii 190 1  |-  ( (
ph  ->  ( ps  <->  ch )
)  <->  ( ( ph  ->  ps )  <->  ( ph  ->  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188
This theorem is referenced by:  pm5.74i  248  pm5.74ri  249  pm5.74d  250  pm5.74rd  251  bibi2d  319  pm5.32  640  orbidi  940
  Copyright terms: Public domain W3C validator