MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.71 Structured version   Unicode version

Theorem pm5.71 934
Description: Theorem *5.71 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 23-Jun-2005.)
Assertion
Ref Expression
pm5.71  |-  ( ( ps  ->  -.  ch )  ->  ( ( ( ph  \/  ps )  /\  ch ) 
<->  ( ph  /\  ch ) ) )

Proof of Theorem pm5.71
StepHypRef Expression
1 orel2 383 . . . 4  |-  ( -. 
ps  ->  ( ( ph  \/  ps )  ->  ph )
)
2 orc 385 . . . 4  |-  ( ph  ->  ( ph  \/  ps ) )
31, 2impbid1 203 . . 3  |-  ( -. 
ps  ->  ( ( ph  \/  ps )  <->  ph ) )
43anbi1d 704 . 2  |-  ( -. 
ps  ->  ( ( (
ph  \/  ps )  /\  ch )  <->  ( ph  /\ 
ch ) ) )
5 pm2.21 108 . . 3  |-  ( -. 
ch  ->  ( ch  ->  ( ( ph  \/  ps ) 
<-> 
ph ) ) )
65pm5.32rd 640 . 2  |-  ( -. 
ch  ->  ( ( (
ph  \/  ps )  /\  ch )  <->  ( ph  /\ 
ch ) ) )
74, 6ja 161 1  |-  ( ( ps  ->  -.  ch )  ->  ( ( ( ph  \/  ps )  /\  ch ) 
<->  ( ph  /\  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator