MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.6 Structured version   Unicode version

Theorem pm5.6 920
Description: Conjunction in antecedent versus disjunction in consequent. Theorem *5.6 of [WhiteheadRussell] p. 125. (Contributed by NM, 8-Jun-1994.)
Assertion
Ref Expression
pm5.6  |-  ( ( ( ph  /\  -.  ps )  ->  ch )  <->  (
ph  ->  ( ps  \/  ch ) ) )

Proof of Theorem pm5.6
StepHypRef Expression
1 impexp 447 . 2  |-  ( ( ( ph  /\  -.  ps )  ->  ch )  <->  (
ph  ->  ( -.  ps  ->  ch ) ) )
2 df-or 371 . . 3  |-  ( ( ps  \/  ch )  <->  ( -.  ps  ->  ch ) )
32imbi2i 313 . 2  |-  ( (
ph  ->  ( ps  \/  ch ) )  <->  ( ph  ->  ( -.  ps  ->  ch ) ) )
41, 3bitr4i 255 1  |-  ( ( ( ph  /\  -.  ps )  ->  ch )  <->  (
ph  ->  ( ps  \/  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372
This theorem is referenced by:  ssundif  3879  brdom3  8957  grothprim  9260  eliccelico  28353  elicoelioo  28354  ballotlemfc0  29321  ballotlemfcc  29322  elicc3  30966  ifpidg  36055  icccncfext  37585
  Copyright terms: Public domain W3C validator