MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.41 Structured version   Unicode version

Theorem pm5.41 365
Description: Theorem *5.41 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 12-Oct-2012.)
Assertion
Ref Expression
pm5.41  |-  ( ( ( ph  ->  ps )  ->  ( ph  ->  ch ) )  <->  ( ph  ->  ( ps  ->  ch ) ) )

Proof of Theorem pm5.41
StepHypRef Expression
1 imdi 364 . 2  |-  ( (
ph  ->  ( ps  ->  ch ) )  <->  ( ( ph  ->  ps )  -> 
( ph  ->  ch )
) )
21bicomi 205 1  |-  ( ( ( ph  ->  ps )  ->  ( ph  ->  ch ) )  <->  ( ph  ->  ( ps  ->  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator