MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.32 Structured version   Visualization version   Unicode version

Theorem pm5.32 646
Description: Distribution of implication over biconditional. Theorem *5.32 of [WhiteheadRussell] p. 125. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
pm5.32  |-  ( (
ph  ->  ( ps  <->  ch )
)  <->  ( ( ph  /\ 
ps )  <->  ( ph  /\ 
ch ) ) )

Proof of Theorem pm5.32
StepHypRef Expression
1 notbi 301 . . . 4  |-  ( ( ps  <->  ch )  <->  ( -.  ps 
<->  -.  ch ) )
21imbi2i 318 . . 3  |-  ( (
ph  ->  ( ps  <->  ch )
)  <->  ( ph  ->  ( -.  ps  <->  -.  ch )
) )
3 pm5.74 252 . . 3  |-  ( (
ph  ->  ( -.  ps  <->  -. 
ch ) )  <->  ( ( ph  ->  -.  ps )  <->  (
ph  ->  -.  ch )
) )
4 notbi 301 . . 3  |-  ( ( ( ph  ->  -.  ps )  <->  ( ph  ->  -. 
ch ) )  <->  ( -.  ( ph  ->  -.  ps )  <->  -.  ( ph  ->  -.  ch ) ) )
52, 3, 43bitri 279 . 2  |-  ( (
ph  ->  ( ps  <->  ch )
)  <->  ( -.  ( ph  ->  -.  ps )  <->  -.  ( ph  ->  -.  ch ) ) )
6 df-an 377 . . 3  |-  ( (
ph  /\  ps )  <->  -.  ( ph  ->  -.  ps ) )
7 df-an 377 . . 3  |-  ( (
ph  /\  ch )  <->  -.  ( ph  ->  -.  ch ) )
86, 7bibi12i 321 . 2  |-  ( ( ( ph  /\  ps ) 
<->  ( ph  /\  ch ) )  <->  ( -.  ( ph  ->  -.  ps )  <->  -.  ( ph  ->  -.  ch ) ) )
95, 8bitr4i 260 1  |-  ( (
ph  ->  ( ps  <->  ch )
)  <->  ( ( ph  /\ 
ps )  <->  ( ph  /\ 
ch ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190  df-an 377
This theorem is referenced by:  pm5.32i  647  pm5.32d  649  xordi  911  rabbi  2981  rabxfrd  4638  asymref  5238  mpt22eqb  6437  cfilucfil4  22344  wl-ax11-lem8  31968  relexp0eq  36339  2sb5nd  36972  2sb5ndVD  37348  2sb5ndALT  37370
  Copyright terms: Public domain W3C validator