MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.31 Structured version   Unicode version

Theorem pm5.31 588
Description: Theorem *5.31 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.31  |-  ( ( ch  /\  ( ph  ->  ps ) )  -> 
( ph  ->  ( ps 
/\  ch ) ) )

Proof of Theorem pm5.31
StepHypRef Expression
1 pm3.21 448 . . 3  |-  ( ch 
->  ( ps  ->  ( ps  /\  ch ) ) )
21imim2d 52 . 2  |-  ( ch 
->  ( ( ph  ->  ps )  ->  ( ph  ->  ( ps  /\  ch ) ) ) )
32imp 429 1  |-  ( ( ch  /\  ( ph  ->  ps ) )  -> 
( ph  ->  ( ps 
/\  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by:  bj-bary1lem1  33770
  Copyright terms: Public domain W3C validator