MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.31 Unicode version

Theorem pm5.31 574
Description: Theorem *5.31 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.31  |-  ( ( ch  /\  ( ph  ->  ps ) )  -> 
( ph  ->  ( ps 
/\  ch ) ) )

Proof of Theorem pm5.31
StepHypRef Expression
1 pm3.21 437 . . 3  |-  ( ch 
->  ( ps  ->  ( ps  /\  ch ) ) )
21imim2d 50 . 2  |-  ( ch 
->  ( ( ph  ->  ps )  ->  ( ph  ->  ( ps  /\  ch ) ) ) )
32imp 420 1  |-  ( ( ch  /\  ( ph  ->  ps ) )  -> 
( ph  ->  ( ps 
/\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360
This theorem is referenced by:  tartarmap  25054
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator