MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.19 Structured version   Visualization version   Unicode version

Theorem pm5.19 366
Description: Theorem *5.19 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.19  |-  -.  ( ph 
<->  -.  ph )

Proof of Theorem pm5.19
StepHypRef Expression
1 biid 244 . 2  |-  ( ph  <->  ph )
2 pm5.18 362 . 2  |-  ( (
ph 
<-> 
ph )  <->  -.  ( ph 
<->  -.  ph ) )
31, 2mpbi 213 1  |-  -.  ( ph 
<->  -.  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190
This theorem is referenced by:  xorexmid  1434  ru  3277  pwfseqlem1  9108  bisym1  31127  bj-ru0  31581  rusbcALT  36833
  Copyright terms: Public domain W3C validator