MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.11 Unicode version

Theorem pm5.11 859
Description: Theorem *5.11 of [WhiteheadRussell] p. 123. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.11  |-  ( (
ph  ->  ps )  \/  ( -.  ph  ->  ps ) )

Proof of Theorem pm5.11
StepHypRef Expression
1 pm2.5 146 . 2  |-  ( -.  ( ph  ->  ps )  ->  ( -.  ph  ->  ps ) )
21orri 367 1  |-  ( (
ph  ->  ps )  \/  ( -.  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    \/ wo 359
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator