MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.83 Structured version   Visualization version   Unicode version

Theorem pm4.83 941
Description: Theorem *4.83 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.83  |-  ( ( ( ph  ->  ps )  /\  ( -.  ph  ->  ps ) )  <->  ps )

Proof of Theorem pm4.83
StepHypRef Expression
1 exmid 417 . . 3  |-  ( ph  \/  -.  ph )
21a1bi 339 . 2  |-  ( ps  <->  ( ( ph  \/  -.  ph )  ->  ps )
)
3 jaob 793 . 2  |-  ( ( ( ph  \/  -.  ph )  ->  ps )  <->  ( ( ph  ->  ps )  /\  ( -.  ph  ->  ps ) ) )
42, 3bitr2i 254 1  |-  ( ( ( ph  ->  ps )  /\  ( -.  ph  ->  ps ) )  <->  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373
This theorem is referenced by:  dmdbr5ati  28087  cvlsupr3  32922  rp-fakeanorass  36169
  Copyright terms: Public domain W3C validator