MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.71 Structured version   Unicode version

Theorem pm4.71 628
Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 2-Dec-2012.)
Assertion
Ref Expression
pm4.71  |-  ( (
ph  ->  ps )  <->  ( ph  <->  (
ph  /\  ps )
) )

Proof of Theorem pm4.71
StepHypRef Expression
1 simpl 455 . . 3  |-  ( (
ph  /\  ps )  ->  ph )
21biantru 503 . 2  |-  ( (
ph  ->  ( ph  /\  ps ) )  <->  ( ( ph  ->  ( ph  /\  ps ) )  /\  (
( ph  /\  ps )  ->  ph ) ) )
3 anclb 545 . 2  |-  ( (
ph  ->  ps )  <->  ( ph  ->  ( ph  /\  ps ) ) )
4 dfbi2 626 . 2  |-  ( (
ph 
<->  ( ph  /\  ps ) )  <->  ( ( ph  ->  ( ph  /\  ps ) )  /\  (
( ph  /\  ps )  ->  ph ) ) )
52, 3, 43bitr4i 277 1  |-  ( (
ph  ->  ps )  <->  ( ph  <->  (
ph  /\  ps )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369
This theorem is referenced by:  pm4.71r  629  pm4.71i  630  pm4.71d  632  bigolden  933  pm5.75  935  exintrbi  1709  rabid2  2960  dfss2  3406  disj3  3787  dmopab3  5128  cusgrauvtxb  24617  rabid2f  27518  mptfnf  27640  nanorxor  31353
  Copyright terms: Public domain W3C validator