MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.66 Structured version   Visualization version   Unicode version

Theorem pm4.66 427
Description: Theorem *4.66 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.66  |-  ( ( -.  ph  ->  -.  ps ) 
<->  ( ph  \/  -.  ps ) )

Proof of Theorem pm4.66
StepHypRef Expression
1 pm4.64 379 1  |-  ( ( -.  ph  ->  -.  ps ) 
<->  ( ph  \/  -.  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190  df-or 377
This theorem is referenced by:  pm4.54  501  ifpim123g  36215  hirstL-ax3  38625
  Copyright terms: Public domain W3C validator