MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.64 Structured version   Unicode version

Theorem pm4.64 372
Description: Theorem *4.64 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.64  |-  ( ( -.  ph  ->  ps )  <->  (
ph  \/  ps )
)

Proof of Theorem pm4.64
StepHypRef Expression
1 df-or 370 . 2  |-  ( (
ph  \/  ps )  <->  ( -.  ph  ->  ps )
)
21bicomi 202 1  |-  ( ( -.  ph  ->  ps )  <->  (
ph  \/  ps )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370
This theorem is referenced by:  pm4.66  420  ioran  490  fimaxg  7767  kmlem8  8537  axgroth6  9206  dfcon2  19714  ragflat3  23819  hirstL-ax3  31582  bj-dfif2  33244
  Copyright terms: Public domain W3C validator