MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.63 Structured version   Unicode version

Theorem pm4.63 422
Description: Theorem *4.63 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.63  |-  ( -.  ( ph  ->  -.  ps )  <->  ( ph  /\  ps ) )

Proof of Theorem pm4.63
StepHypRef Expression
1 df-an 372 . 2  |-  ( (
ph  /\  ps )  <->  -.  ( ph  ->  -.  ps ) )
21bicomi 205 1  |-  ( -.  ( ph  ->  -.  ps )  <->  ( ph  /\  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372
This theorem is referenced by:  pm4.67  429  nqereu  9300  axacprim  30281  andnand1  31003
  Copyright terms: Public domain W3C validator