MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.62 Structured version   Unicode version

Theorem pm4.62 419
Description: Theorem *4.62 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.62  |-  ( (
ph  ->  -.  ps )  <->  ( -.  ph  \/  -.  ps ) )

Proof of Theorem pm4.62
StepHypRef Expression
1 imor 412 1  |-  ( (
ph  ->  -.  ps )  <->  ( -.  ph  \/  -.  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370
This theorem is referenced by:  ianor  488  rb-bijust  1556  frxp  6682  bnj1174  31994  cdleme0nex  33934
  Copyright terms: Public domain W3C validator