MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.61 Structured version   Unicode version

Theorem pm4.61 426
Description: Theorem *4.61 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.61  |-  ( -.  ( ph  ->  ps ) 
<->  ( ph  /\  -.  ps ) )

Proof of Theorem pm4.61
StepHypRef Expression
1 annim 425 . 2  |-  ( (
ph  /\  -.  ps )  <->  -.  ( ph  ->  ps ) )
21bicomi 202 1  |-  ( -.  ( ph  ->  ps ) 
<->  ( ph  /\  -.  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by:  pm4.65  427  npss  3609  difin  3730  isf32lem2  8725  nmo  27048  fphpd  30343  islindeps  32004  bnj1253  33029
  Copyright terms: Public domain W3C validator