MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.61 Structured version   Unicode version

Theorem pm4.61 427
Description: Theorem *4.61 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.61  |-  ( -.  ( ph  ->  ps ) 
<->  ( ph  /\  -.  ps ) )

Proof of Theorem pm4.61
StepHypRef Expression
1 annim 426 . 2  |-  ( (
ph  /\  -.  ps )  <->  -.  ( ph  ->  ps ) )
21bicomi 205 1  |-  ( -.  ( ph  ->  ps ) 
<->  ( ph  /\  -.  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372
This theorem is referenced by:  pm4.65  428  npss  3575  difin  3710  isf32lem2  8785  nmo  28107  bnj1253  29822  fphpd  35578  rp-fakenanass  36079  nabctnabc  38232  islindeps  39520
  Copyright terms: Public domain W3C validator