MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.55 Structured version   Unicode version

Theorem pm4.55 491
Description: Theorem *4.55 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.55  |-  ( -.  ( -.  ph  /\  ps )  <->  ( ph  \/  -.  ps ) )

Proof of Theorem pm4.55
StepHypRef Expression
1 pm4.54 490 . . 3  |-  ( ( -.  ph  /\  ps )  <->  -.  ( ph  \/  -.  ps ) )
21con2bii 332 . 2  |-  ( (
ph  \/  -.  ps )  <->  -.  ( -.  ph  /\  ps ) )
32bicomi 202 1  |-  ( -.  ( -.  ph  /\  ps )  <->  ( ph  \/  -.  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    \/ wo 368    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371
This theorem is referenced by:  chrelat2i  25688  hlrelat2  32735
  Copyright terms: Public domain W3C validator