MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.53 Structured version   Unicode version

Theorem pm4.53 494
Description: Theorem *4.53 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.53  |-  ( -.  ( ph  /\  -.  ps )  <->  ( -.  ph  \/  ps ) )

Proof of Theorem pm4.53
StepHypRef Expression
1 pm4.52 493 . . 3  |-  ( (
ph  /\  -.  ps )  <->  -.  ( -.  ph  \/  ps ) )
21con2bii 333 . 2  |-  ( ( -.  ph  \/  ps ) 
<->  -.  ( ph  /\  -.  ps ) )
32bicomi 205 1  |-  ( -.  ( ph  /\  -.  ps )  <->  ( -.  ph  \/  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 187    \/ wo 369    /\ wa 370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372
This theorem is referenced by:  undif3  3740  itg2addnclem  31697  cdleme32e  33721  undif3VD  36919
  Copyright terms: Public domain W3C validator