MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.45 Structured version   Visualization version   Unicode version

Theorem pm4.45 699
Description: Theorem *4.45 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.45  |-  ( ph  <->  (
ph  /\  ( ph  \/  ps ) ) )

Proof of Theorem pm4.45
StepHypRef Expression
1 orc 391 . 2  |-  ( ph  ->  ( ph  \/  ps ) )
21pm4.71i 642 1  |-  ( ph  <->  (
ph  /\  ( ph  \/  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    \/ wo 374    /\ wa 375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377
This theorem is referenced by:  dn1  983
  Copyright terms: Public domain W3C validator