MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.45 Unicode version

Theorem pm4.45 672
Description: Theorem *4.45 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.45  |-  ( ph  <->  (
ph  /\  ( ph  \/  ps ) ) )

Proof of Theorem pm4.45
StepHypRef Expression
1 orc 376 . 2  |-  ( ph  ->  ( ph  \/  ps ) )
21pm4.71i 616 1  |-  ( ph  <->  (
ph  /\  ( ph  \/  ps ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    \/ wo 359    /\ wa 360
This theorem is referenced by:  dn1  937
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362
  Copyright terms: Public domain W3C validator