MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.39 Structured version   Visualization version   Unicode version

Theorem pm4.39 887
Description: Theorem *4.39 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.39  |-  ( ( ( ph  <->  ch )  /\  ( ps  <->  th )
)  ->  ( ( ph  \/  ps )  <->  ( ch  \/  th ) ) )

Proof of Theorem pm4.39
StepHypRef Expression
1 simpl 463 . 2  |-  ( ( ( ph  <->  ch )  /\  ( ps  <->  th )
)  ->  ( ph  <->  ch ) )
2 simpr 467 . 2  |-  ( ( ( ph  <->  ch )  /\  ( ps  <->  th )
)  ->  ( ps  <->  th ) )
31, 2orbi12d 721 1  |-  ( ( ( ph  <->  ch )  /\  ( ps  <->  th )
)  ->  ( ( ph  \/  ps )  <->  ( ch  \/  th ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    \/ wo 374    /\ wa 375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377
This theorem is referenced by:  3orbi123VD  37285
  Copyright terms: Public domain W3C validator