MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.25 Structured version   Unicode version

Theorem pm4.25 513
Description: Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.25  |-  ( ph  <->  (
ph  \/  ph ) )

Proof of Theorem pm4.25
StepHypRef Expression
1 oridm 512 . 2  |-  ( (
ph  \/  ph )  <->  ph )
21bicomi 202 1  |-  ( ph  <->  (
ph  \/  ph ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    \/ wo 366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 368
This theorem is referenced by:  brbtwn2  24612  ifpid1g  35565
  Copyright terms: Public domain W3C validator