MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.45 Structured version   Unicode version

Theorem pm3.45 842
Description: Theorem *3.45 (Fact) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.45  |-  ( (
ph  ->  ps )  -> 
( ( ph  /\  ch )  ->  ( ps 
/\  ch ) ) )

Proof of Theorem pm3.45
StepHypRef Expression
1 id 23 . 2  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ps )
)
21anim1d 566 1  |-  ( (
ph  ->  ps )  -> 
( ( ph  /\  ch )  ->  ( ps 
/\  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372
This theorem is referenced by:  mopick  2331  rabss2  3544  lmcnp  20307  fbflim2  20979  ivthlem2  22390  ivthlem3  22391  ssrmo  28116  arg-ax  31069  pm10.56  36577
  Copyright terms: Public domain W3C validator