MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.45 Unicode version

Theorem pm3.45 810
Description: Theorem *3.45 (Fact) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.45  |-  ( (
ph  ->  ps )  -> 
( ( ph  /\  ch )  ->  ( ps 
/\  ch ) ) )

Proof of Theorem pm3.45
StepHypRef Expression
1 id 21 . 2  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ps )
)
21anim1d 549 1  |-  ( (
ph  ->  ps )  -> 
( ( ph  /\  ch )  ->  ( ps 
/\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360
This theorem is referenced by:  rabss2  3177  lmcnp  16864  fbflim2  17504  ivthlem2  18644  ivthlem3  18645  arg-ax  24029  pm10.56  26731
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator