MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.45 Structured version   Visualization version   Unicode version

Theorem pm3.45 845
Description: Theorem *3.45 (Fact) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.45  |-  ( (
ph  ->  ps )  -> 
( ( ph  /\  ch )  ->  ( ps 
/\  ch ) ) )

Proof of Theorem pm3.45
StepHypRef Expression
1 id 22 . 2  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ps )
)
21anim1d 568 1  |-  ( (
ph  ->  ps )  -> 
( ( ph  /\  ch )  ->  ( ps 
/\  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189  df-an 373
This theorem is referenced by:  mopick  2364  rabss2  3512  lmcnp  20320  fbflim2  20992  ivthlem2  22403  ivthlem3  22404  ssrmo  28130  arg-ax  31076  pm10.56  36719
  Copyright terms: Public domain W3C validator