MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.41 Structured version   Unicode version

Theorem pm3.41 562
Description: Theorem *3.41 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.41  |-  ( (
ph  ->  ch )  -> 
( ( ph  /\  ps )  ->  ch )
)

Proof of Theorem pm3.41
StepHypRef Expression
1 simpl 459 . 2  |-  ( (
ph  /\  ps )  ->  ph )
21imim1i 61 1  |-  ( (
ph  ->  ch )  -> 
( ( ph  /\  ps )  ->  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189  df-an 373
This theorem is referenced by:  opabbrex  6345  opabbrexOLD  6346
  Copyright terms: Public domain W3C validator