MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.33 Structured version   Unicode version

Theorem pm3.33 587
Description: Theorem *3.33 (Syll) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.33  |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ch ) )  ->  ( ph  ->  ch ) )

Proof of Theorem pm3.33
StepHypRef Expression
1 imim1 79 . 2  |-  ( (
ph  ->  ps )  -> 
( ( ps  ->  ch )  ->  ( ph  ->  ch ) ) )
21imp 430 1  |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ch ) )  ->  ( ph  ->  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372
This theorem is referenced by:  alsyl  1750  ucncn  21231  bnj1023  29380  bnj907  29564  2sb5ndALT  36969
  Copyright terms: Public domain W3C validator