MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.31 Structured version   Visualization version   Unicode version

Theorem pm3.31 447
Description: Theorem *3.31 (Imp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
pm3.31  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  (
( ph  /\  ps )  ->  ch ) )

Proof of Theorem pm3.31
StepHypRef Expression
1 id 22 . 2  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  ( ph  ->  ( ps  ->  ch ) ) )
21impd 433 1  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  (
( ph  /\  ps )  ->  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189  df-an 373
This theorem is referenced by:  impexp  448  imp5a  603  issref  5213  bj-sb56  31252  bj-ssbequ2  31256  trsbc  36901  3impexpVD  37252  trsbcVD  37274  19.41rgVD  37299  stoweidlem17  37877
  Copyright terms: Public domain W3C validator