MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.13 Structured version   Unicode version

Theorem pm3.13 501
Description: Theorem *3.13 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.13  |-  ( -.  ( ph  /\  ps )  ->  ( -.  ph  \/  -.  ps ) )

Proof of Theorem pm3.13
StepHypRef Expression
1 pm3.11 499 . 2  |-  ( -.  ( -.  ph  \/  -.  ps )  ->  ( ph  /\  ps ) )
21con1i 129 1  |-  ( -.  ( ph  /\  ps )  ->  ( -.  ph  \/  -.  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371
This theorem is referenced by:  ifcomnan  3988  naim1  29703  naim2  29704  tsbi1  30371  vk15.4j  32594  vk15.4jVD  33011
  Copyright terms: Public domain W3C validator