MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.12 Structured version   Unicode version

Theorem pm3.12 503
Description: Theorem *3.12 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.12  |-  ( ( -.  ph  \/  -.  ps )  \/  ( ph  /\  ps ) )

Proof of Theorem pm3.12
StepHypRef Expression
1 pm3.11 502 . 2  |-  ( -.  ( -.  ph  \/  -.  ps )  ->  ( ph  /\  ps ) )
21orri 378 1  |-  ( ( -.  ph  \/  -.  ps )  \/  ( ph  /\  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 370    /\ wa 371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373
This theorem is referenced by:  tsan1  32303
  Copyright terms: Public domain W3C validator