Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mp Structured version   Unicode version

Theorem pm2mp 19780
 Description: The transformation of a sum of matrices having scaled monomials with the same power as entries into a sum of scaled monomials as a polynomial over matrices. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
monmat2matmon.p Poly1
monmat2matmon.c Mat
monmat2matmon.b
monmat2matmon.m1
monmat2matmon.e1 .gmulGrp
monmat2matmon.x var1
monmat2matmon.a Mat
monmat2matmon.k
monmat2matmon.q Poly1
monmat2matmon.i pMatToMatPoly
monmat2matmon.e2 .gmulGrp
monmat2matmon.y var1
monmat2matmon.m2
monmat2matmon.t matToPolyMat
Assertion
Ref Expression
pm2mp finSupp g g
Distinct variable groups:   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()   ()   ()

Proof of Theorem pm2mp
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monmat2matmon.b . . 3
2 eqid 2429 . . 3
3 crngring 17726 . . . . . 6
43anim2i 571 . . . . 5
5 monmat2matmon.p . . . . . 6 Poly1
6 monmat2matmon.c . . . . . 6 Mat
75, 6pmatring 19648 . . . . 5
8 ringcmn 17746 . . . . 5 CMnd
94, 7, 83syl 18 . . . 4 CMnd
109adantr 466 . . 3 finSupp CMnd
11 monmat2matmon.a . . . . . . 7 Mat
1211matring 19399 . . . . . 6
133, 12sylan2 476 . . . . 5
14 monmat2matmon.q . . . . . 6 Poly1
1514ply1ring 18776 . . . . 5
16 ringmnd 17724 . . . . 5
1713, 15, 163syl 18 . . . 4
1817adantr 466 . . 3 finSupp
19 nn0ex 10875 . . . 4
2019a1i 11 . . 3 finSupp
21 monmat2matmon.m1 . . . . . . 7
22 monmat2matmon.e1 . . . . . . 7 .gmulGrp
23 monmat2matmon.x . . . . . . 7 var1
24 eqid 2429 . . . . . . 7
25 monmat2matmon.i . . . . . . 7 pMatToMatPoly
265, 6, 1, 21, 22, 23, 11, 14, 24, 25pm2mpghm 19771 . . . . . 6
273, 26sylan2 476 . . . . 5
2827adantr 466 . . . 4 finSupp
29 ghmmhm 16844 . . . 4 MndHom
3028, 29syl 17 . . 3 finSupp MndHom
314adantr 466 . . . . 5 finSupp
3231adantr 466 . . . 4 finSupp
33 elmapi 7501 . . . . . . 7
3433adantr 466 . . . . . 6 finSupp
3534adantl 467 . . . . 5 finSupp
3635ffvelrnda 6037 . . . 4 finSupp
37 simpr 462 . . . 4 finSupp
38 monmat2matmon.k . . . . 5
39 monmat2matmon.t . . . . 5 matToPolyMat
40 monmat2matmon.m2 . . . . 5
41 monmat2matmon.e2 . . . . 5 .gmulGrp
42 monmat2matmon.y . . . . 5 var1
4311, 38, 39, 5, 6, 1, 40, 41, 42mat2pmatscmxcl 19695 . . . 4
4432, 36, 37, 43syl12anc 1262 . . 3 finSupp
45 fvex 5891 . . . . 5
4645a1i 11 . . . 4 finSupp
47 ovex 6333 . . . . 5
4847a1i 11 . . . 4 finSupp
49 simpr 462 . . . . . . 7
50 fvex 5891 . . . . . . 7
51 fsuppmapnn0ub 12204 . . . . . . 7 finSupp
5249, 50, 51sylancl 666 . . . . . 6 finSupp
53 csbov12g 6341 . . . . . . . . . . . . . 14
54 csbov1g 6342 . . . . . . . . . . . . . . . 16
55 csbvarg 3826 . . . . . . . . . . . . . . . . 17
5655oveq1d 6320 . . . . . . . . . . . . . . . 16
5754, 56eqtrd 2470 . . . . . . . . . . . . . . 15
58 csbfv2g 5917 . . . . . . . . . . . . . . . 16
59 csbfv2g 5917 . . . . . . . . . . . . . . . . . 18
6055fveq2d 5885 . . . . . . . . . . . . . . . . . 18
6159, 60eqtrd 2470 . . . . . . . . . . . . . . . . 17
6261fveq2d 5885 . . . . . . . . . . . . . . . 16
6358, 62eqtrd 2470 . . . . . . . . . . . . . . 15
6457, 63oveq12d 6323 . . . . . . . . . . . . . 14
6553, 64eqtrd 2470 . . . . . . . . . . . . 13
6665adantl 467 . . . . . . . . . . . 12
6766adantr 466 . . . . . . . . . . 11
68 fveq2 5881 . . . . . . . . . . . . 13
6968oveq2d 6321 . . . . . . . . . . . 12
7039, 11, 38, 5, 6, 1mat2pmatghm 19685 . . . . . . . . . . . . . . . . 17
713, 70sylan2 476 . . . . . . . . . . . . . . . 16
7271ad3antrrr 734 . . . . . . . . . . . . . . 15
73 ghmmhm 16844 . . . . . . . . . . . . . . 15 MndHom
74 eqid 2429 . . . . . . . . . . . . . . . 16
7574, 2mhm0 16541 . . . . . . . . . . . . . . 15 MndHom
7672, 73, 753syl 18 . . . . . . . . . . . . . 14
7776oveq2d 6321 . . . . . . . . . . . . 13
785ply1ring 18776 . . . . . . . . . . . . . . . . 17
793, 78syl 17 . . . . . . . . . . . . . . . 16
806matlmod 19385 . . . . . . . . . . . . . . . 16
8179, 80sylan2 476 . . . . . . . . . . . . . . 15
8281ad3antrrr 734 . . . . . . . . . . . . . 14
8379adantl 467 . . . . . . . . . . . . . . . . . 18
84 eqid 2429 . . . . . . . . . . . . . . . . . . 19 mulGrp mulGrp
8584ringmgp 17721 . . . . . . . . . . . . . . . . . 18 mulGrp
8683, 85syl 17 . . . . . . . . . . . . . . . . 17 mulGrp
8786ad3antrrr 734 . . . . . . . . . . . . . . . 16 mulGrp
88 simpr 462 . . . . . . . . . . . . . . . 16
893adantl 467 . . . . . . . . . . . . . . . . . 18
90 eqid 2429 . . . . . . . . . . . . . . . . . . 19
9142, 5, 90vr1cl 18745 . . . . . . . . . . . . . . . . . 18
9289, 91syl 17 . . . . . . . . . . . . . . . . 17
9392ad3antrrr 734 . . . . . . . . . . . . . . . 16
9484, 90mgpbas 17664 . . . . . . . . . . . . . . . . 17 mulGrp
9594, 41mulgnn0cl 16725 . . . . . . . . . . . . . . . 16 mulGrp
9687, 88, 93, 95syl3anc 1264 . . . . . . . . . . . . . . 15
975ply1crng 18726 . . . . . . . . . . . . . . . . . . 19
986matsca2 19376 . . . . . . . . . . . . . . . . . . 19 Scalar
9997, 98sylan2 476 . . . . . . . . . . . . . . . . . 18 Scalar
10099eqcomd 2437 . . . . . . . . . . . . . . . . 17 Scalar
101100ad3antrrr 734 . . . . . . . . . . . . . . . 16 Scalar
102101fveq2d 5885 . . . . . . . . . . . . . . 15 Scalar
10396, 102eleqtrrd 2520 . . . . . . . . . . . . . 14 Scalar
104 eqid 2429 . . . . . . . . . . . . . . 15 Scalar Scalar
105 eqid 2429 . . . . . . . . . . . . . . 15 Scalar Scalar
106104, 40, 105, 2lmodvs0 18060 . . . . . . . . . . . . . 14 Scalar
10782, 103, 106syl2anc 665 . . . . . . . . . . . . 13
10877, 107eqtrd 2470 . . . . . . . . . . . 12
10969, 108sylan9eqr 2492 . . . . . . . . . . 11
11067, 109eqtrd 2470 . . . . . . . . . 10
111110ex 435 . . . . . . . . 9
112111imim2d 54 . . . . . . . 8
113112ralimdva 2840 . . . . . . 7
114113reximdva 2907 . . . . . 6
11552, 114syld 45 . . . . 5 finSupp
116115impr 623 . . . 4 finSupp
11746, 48, 116mptnn0fsupp 12206 . . 3 finSupp finSupp
1181, 2, 10, 18, 20, 30, 44, 117gsummptmhm 17508 . 2 finSupp g g
119 simpll 758 . . . . 5 finSupp
1205, 6, 1, 21, 22, 23, 11, 38, 14, 25, 41, 42, 40, 39monmat2matmon 19779 . . . . 5
121119, 36, 37, 120syl12anc 1262 . . . 4 finSupp
122121mpteq2dva 4512 . . 3 finSupp
123122oveq2d 6321 . 2 finSupp g g
124118, 123eqtr3d 2472 1 finSupp g g
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 370   wceq 1437   wcel 1870  wral 2782  wrex 2783  cvv 3087  csb 3401   class class class wbr 4426   cmpt 4484  wf 5597  cfv 5601  (class class class)co 6305   cmap 7480  cfn 7577   finSupp cfsupp 7889   clt 9674  cn0 10869  cbs 15084  Scalarcsca 15155  cvsca 15156  c0g 15297   g cgsu 15298  cmnd 16486   MndHom cmhm 16531  .gcmg 16623   cghm 16831  CMndccmn 17365  mulGrpcmgp 17658  crg 17715  ccrg 17716  clmod 18026  var1cv1 18704  Poly1cpl1 18705   Mat cmat 19363   matToPolyMat cmat2pmat 19659   pMatToMatPoly cpm2mp 19747 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-ot 4011  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-ofr 6546  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-sup 7962  df-oi 8025  df-card 8372  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-fz 11783  df-fzo 11914  df-seq 12211  df-hash 12513  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-hom 15176  df-cco 15177  df-0g 15299  df-gsum 15300  df-prds 15305  df-pws 15307  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-mhm 16533  df-submnd 16534  df-grp 16624  df-minusg 16625  df-sbg 16626  df-mulg 16627  df-subg 16765  df-ghm 16832  df-cntz 16922  df-cmn 17367  df-abl 17368  df-mgp 17659  df-ur 17671  df-ring 17717  df-cring 17718  df-subrg 17941  df-lmod 18028  df-lss 18091  df-sra 18330  df-rgmod 18331  df-assa 18471  df-ascl 18473  df-psr 18515  df-mvr 18516  df-mpl 18517  df-opsr 18519  df-psr1 18708  df-vr1 18709  df-ply1 18710  df-coe1 18711  df-dsmm 19226  df-frlm 19241  df-mamu 19340  df-mat 19364  df-mat2pmat 19662  df-decpmat 19718  df-pm2mp 19748 This theorem is referenced by:  cpmidpmat  19828  cpmadumatpoly  19838
 Copyright terms: Public domain W3C validator