MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.75 Unicode version

Theorem pm2.75 825
Description: Theorem *2.75 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 4-Jan-2013.)
Assertion
Ref Expression
pm2.75  |-  ( (
ph  \/  ps )  ->  ( ( ph  \/  ( ps  ->  ch )
)  ->  ( ph  \/  ch ) ) )

Proof of Theorem pm2.75
StepHypRef Expression
1 pm2.76 824 . 2  |-  ( (
ph  \/  ( ps  ->  ch ) )  -> 
( ( ph  \/  ps )  ->  ( ph  \/  ch ) ) )
21com12 29 1  |-  ( (
ph  \/  ps )  ->  ( ( ph  \/  ( ps  ->  ch )
)  ->  ( ph  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator